关注微信 微信二维码
咨询热线: 0531-85960083
济南融恩机电设备有限公司
德国VSEAHM01-2S G1/8N流量计生产
编辑:admin 浏览量:59 发布日期: 2022-04-20 14:28
德国VSEAHM01-2S G1/8N流量计生产同时我们还经营:1.量程选择.当使用低量程的流量计时,仪表读数偏差会增加,而使用满量程时,若参数值波动较大,则会使测量值偏低。2.差压计零位,静压漂移,随环境改变示值超差。3.差压计读数误差的影响因素有:(1)双波纹管差压计安装时其倾斜度超标或安装不牢靠。(2)存在静压零位误差。(3)波纹管受腐蚀或泄漏。(4)四连杆机构摩擦过大。(5)记录笔在卡片上压得过紧,墨水管紧使笔尖不能正常工作。(6)差压计存在不规则的校验特性,且为不可修正,或可能存在校准误差。(7)记录曲线为人为手动补描。(8)记录卡片不规范,存在偏心引起流量计误差。(9)时钟走时不准。为促使电磁流量计实际使用寿命增加,把故障实际发生率把控至最低范围,务必强化对电池流量计日常维护管理。一是,变送装置管内壁部位,需定期清理好结垢层,对绝缘衬里优良绝缘性起到良好保障作用;二是,生产运行期间,定期检查仪表,属于保证后续湿气与水下运动关键,特别是检查接线口好仪表端盖处密封性,以去吧仪表内部不会进入水与湿气;为确保仪表有极高的密封性,应时刻在壳体盖螺纹位置涂好润滑黄油,且需防止因碰撞而受损;三是,流量计实际运行期间,仪表零点务必要定期标定好,确保电磁流量计可实现有效接地;四是,电磁流量计实际使用部门应当为每个技术人员建立起短期与长期的培训计划,设定出具体的培训内容与要求,要根据相关技术人员的实际技能情况,制定有针对性的培训计划。从而促进仪表技术人员对电磁流量计实际期间故障问题的实时检查分析及排除能力,强化对电磁流量计日常的维修处理,以确保更好地使用电磁流量计。  由于孔板流量计有多个测量单元,影响其测量准确度的因素很多(如孔板的加工误差,安装误差、计量软件的计算误差等)。此外,在现有工况条件下,由于介质中的杂质对孔板有一定的冲击腐蚀作用,易造成差压变送器产生零点漂移,特别是当天然气处理效果不理想时,对计量的影响更大。因此,节流装置和差压变送器的使用维护是一个重点。应在下面的实际运行中加以注意:(1)当天然气处理效果不理想时,在孔板上游端面会沉积脏物。不仅会降低孔板的使用寿命,还会造成较大的计量偏差。(2)变送器导压管的作用是将孔板前后的压力信号引入差压,测量出差压值参.与流量计算,上下游导压管带液会使差压偏小(大),造成流量偏小(大)。在冬季,导压管冻堵现象较常见,如果流量值出现大的起伏,很可能是导压管带液或冻堵了。(3)孔板胶圈变形。由于孔板胶圈在清油的浸泡下容易变形(这种情况在夏季尤为突出),因此在.天然气处理装置停运的情况下,要注意检查胶圈变形的情况,-旦孔,板松动应立即更换,不然不仅会因胶圈泄漏造成较大的计量误差,还会出现孔板脱落难以取出.必须停产维修的局面。(4)当天然气处理不干净时,其中的粉尘、水化物等对孔板有很强的冲刷腐蚀作用,会在孔板表面形成麻点,使直角边变钝,因此,孔板应经常检查更换,否则准确度会降低。(5)差压变送器零点漂移除了与仪表本身的稳定性有关外,,导压.管带液也会造成很大的影响。由于孔板流量计的流量和差压值成开方关系,差压变送器的零点出现正负漂移会直接造成积算流量偏大或偏小。(6)流量计算机中一些关键参数输入不正确或更新不及时。比.如,孔板开孔直径是以平方的形式出现的,由于孔板开孔直径会随季节和运行时间发生变化,一-定要定期测量孔板的开孔直径,并在流量计算机中及时更新。  天然气组分变化不仅影响相对密度,还影响超压缩系数。对于没有在线色谱仪的计量系统,,在组分变化不大的情况下流量计算机中一般每周输入-周天然气组分的平均值,但在天然气组分变化很大的情况下,每天都要对天然气组分进行化验.更新。2提高天然气计量准确度的应对措施(1)定期清洗检查孔板。比如孔板流量计光洁度直角边锐利度、胶圈变形情况、孔板开孔直径等。在正常的生产情况下。每月清洗检查-次,在出现不正常的情况下,视情况加密检查次数。(2)对流量计前过滤器每两小时排污一次,每月清洗过滤器芯--次。(3)正确输入计量参数并及时更新.按时校验变送器零点。另外,在气量波动较大的情况下,及时调节差压变送器量程,使测量值尽量在量程的1/3-2/3之间,以保证测量准确度。在测量值超出变送器最大、最小量程范围时,要考虑更换合适孔径的孔板。1.环境条件  电磁流量计安装分为两种:一体式和分体式。(1)现场和环境较好的条件下,一般选用一体式,即传感器和转换器组装成一体。(2)分体式电磁流量计即传感器和转换器分开装于不同地点,一般出现以下情况时选用分体式:①环境温度或流量计转换器表面受辐射温度超过60℃;②管道振动较大的场合:③对传感器的铝壳严重腐蚀的场合:④现场湿度较大或有腐蚀性气体的场合:⑤流量计装在高空或不方便调试的场合。2.防爆及防护等级  根据环境要求,选择本安、隔爆型电磁流量计或普通型,并且满足一定的防护等级,按规范进行安装,提高仪表的安全性。3.电极材料  导电介质在电磁流量计管内通过时,在外加磁场的作用下产生感应电势,电极的作用就是把产生的电动势引出来,然后放大、输出标准信号。电极直接跟介质接触,因此,应根据介质的化学性质,选择合适的电极,以免出现腐蚀。常用的电极材质有钽、钛、316L、HC、铂铱合金、碳化钨等。4.接地环或接液环  电磁流量计的输出信号比较小,一般只有2.5~8mV,小流量时信号可能低至几微伏,外界稍有干扰就会影响测量精度。因此,仪表外壳、测量管、介质、仪表屏蔽线等要做好等电位连接,并进行可靠、单独接地。与介质连接的金属部.分,就叫接地环或接液环。接地环的材料选择--般考虑经济性和耐腐蚀性,对于大口径的金属管道上的电磁流量计,为了节约成本,可以不设接地环,将流量计的法兰和管道连起来然后再接地;如果电磁流量计用在小口径的管道上或用在非金属管道上,必须设置接地环。5.内衬材料  内衬主要作用是绝缘,预防电极短路,同时保护测量管不受介质腐蚀。常用的内衬材料包括:聚氨酯橡胶、PFA、天然软橡胶、EPDM橡胶,选择时应根据介质温度、腐蚀性、是否含有固体颗粒、耐磨性能等情况,选择合适的内衬,延.长仪表使用寿命。6.供电电源  一般厂家的电磁流量计采用四线制接线,信号线与电源线分开,可以采用交流220V电源供电,也可以采用直流24V电源供电。原则上采用直流24V安全电源供电,特别是在易燃易爆的环境。vse流量计德国VSEAHM01-2S G1/8N流量计生产1.总体设计  气体涡轮流量计系统软件包括初始化程序、主程序、中断控制程序、流量、温度、压力检测程序以及键盘显示程序等。初始化程序主要完成单片机初始化和设置计数方式等。主程序主要通过查询标志位SET_RUN和OPERATE来判断程序是运行状态还是设置状态,然后调用相应的处理子程序。首先开全局中断,允许单片机响应所有中断源产生的中断请求;当单片机查询到标志位SET_RUN被置位时,就进入设置状态,对仪表系数进行设定;进入运行状态后还要查询标志位OPERATE是否被置位,被置位后就进行温度与压力的.A/D转换、流量的计算和数据的储存。中断程序用于查询定时时间,进入中断服务子程序完成流量采集、工作状况“下温度和压力采集,瞬时流量和累积流量的计算。系统主流程图如图3所示。2.流量温度压力信号采集  流量信号的采集主要通过计数器MR0中断服务程序完成,采用定时器模式,定时时间设为1so定时时间到,比较寄存器里面的内容,大于1s则对计数器IMR1读数,以获得流量信号的频率,并清零;小于1s,则加1后结束。  温度和压力信号的采集是通过PICI6F877单片机内部的ADC模块将其转换成数字量,采样完成后计算出温度和压力值,并将这两个数值在液晶屏上显示出来。3.键盘显示  设置3个键盘,利用电平变化中断功能来实现,采用延时去抖法,按键有效就进入按键处理程序。F表示功能键,用KI来表示,每按一-次表示在流量显示和温度、压力显示间切换,-表示移位键,用K2表示,↑为增加键,用K3表示。如果F+→(即Kl+K2)被按下,则设置标志位置1,主程序查询到其置1后,就进入设置状态。在该状态下,→(K2)键定义为移位键,以闪烁表示光标所在位,每.按一次,闪烁移到下一位,到最后一位回闪第一一位。↑(K3)定义为增加键,对光标所在位的数值进行修改,每按--次,循环增加一个定义单位,定义单位视参数类型而定。当程序查询到↑+→(K2+K3)被按下时,就把累积流量清零,并把标志位置1,当查询到F(K1)键被按下时,每按-一次,在流量显示和温度、压力显示之间切换。气体涡轮流量计采用段式液晶显示器LCM103来显示瞬时和累计流量,同时实时显示温度和压力"。f1.上电前,再次检查流量计供电及信号接线,并确认接线端子,螺丝拧紧,没有松动现象。2.电磁流量计上电,检查二次表液晶屏数值显示是否正常。然后按照第四节进行参数设置。3.参数设置完成后,开始时管道里并没有污水流过,这时流量计二次表应该显示空管报警,同时显示设备位号、量程、瞬时流量为0、量程进度条为空、累积量为0。4.检查自控系统信号是否与流量计二次表显示一致。5.检查管道、阀门及其它装置是否具备进水条件.如果具备进水条件,通知上游来水。按照3个流量值进行标定:50m³/h、100m³/h、150m³/h。上游来水通过调整外派水泵频率,并在出水流量计上尽量接近要求流量值,然后等进水稳定确认无气泡后,开始检查数值是否准确,如果数值基本符合并在工艺要求误差允许范围内,则标定完成.如果误差较大,则需要查明原因:●管道是否有泄露●流量计一次表安装是否有问题●流量计接地是否良好●周围是否有干扰源●一次表与二次表接线是否紧固●信号线屏蔽是否接地●确认一次表与二次表是否配套●重新确认参数设置,并进行微调,比如小信号切除等6.设置完成后,根据装置实际情况,将流量计投入使用。在投入使用前将调试过程中产生的累积量清零,确保自控系统累积量与现场二次表头显示一致,方便后期核对数据。1.涡街流量计的测量范围较大,一般10:1,但测量下限受许多因素限制:Re>10000是涡街流量计工作的最基本条件,除此以外,它还受旋涡能量的限制,介质流速较低,则旋涡的强度、旋转速度也低,难以引起传感元件产生响应信号,旋涡频率f也小,还会使信号处理发生困难。测量上限则受传感器的频率响应(如磁敏式一般不超过400Hz)和电路的频率限制,因此设计时一定要对流速范围进行计算、核算,根据流体的流速进行选择。使用现场环境条件复杂,选型时除注意环境温度、湿度、气氛等条件外,还要考虑电磁干扰。在强干扰如高压输电电站、大型整流所等场合,磁敏式、压电应力等仪表不能正常工作或不能准确测量。2.振动也是该类仪表的一大劲敌。因此在使用时注意避免机械振动,尤其是管道的横向振动(垂直于管道轴线又垂直旋涡发生体轴线的振动),这种影响在流量计结构设计上是无法抑制和消除的。由于涡街信号对流场影响同样敏感,故直管段长度不能保证稳定涡街所必要的流动条件时,是不宜选用的。即使是抗振性较强的电容式、超声波式,保证流体为充分发展的单向流,也是不可忽略的。3.介质温度对涡街流量计的使用性能也有很大的影响。如压力应力式涡街流量计不能长期使用在300℃状态下,因其绝缘阻抗会由常温下的10MΩ~100MΩ急降至1MΩ~10KΩ,输出信号也变小,导致测量特性恶化,对此宜选用磁敏式或电容式结构。在测量系统中,传感器与转换器宜采用分离安装方式,以免长期高温影响仪表可靠性和使用寿命。涡街流量计是一种比较新型的流量计,处于发展阶段,还不很成熟,如果选择不当,性能也不能很好发挥。只有经过合理选型、正确安装后,还需要在使用过程中认真定期维护,不断积累经验,提高对系统故障的预见性以及判断、处理问题的能力,从而达到令人满意的效果。根据高含水原油这一特殊介质及其使用环境的特点,对早期广泛应用于注水、注聚等计量中的电磁流量计进行了相关的技术改进。(1)对传感器进行防爆处理。通过现场应用进行综合分析,认为高含水原油的计量场所是油气密集的地方,需要对传感器进行防爆处理才能满足工作需要。根据传感器的特点及其使用环境的要求,选用了传感器的复合防爆型式,即浇封隔爆型,防爆标志为mdIIBT4.关键技术是传感器主体结构采用了浇封工艺技术、接线盒采用了隔爆外壳。接线盒的隔爆接合面为螺纹隔爆接合面,引人装置采用密封圈压紧螺母式,产品通过了国家防爆电气产品质量监督检验测试中心的5项试验。(2)提高转换器的输人阻抗,保证流量计的测量精度。对电磁流量计来说,传感器产生的感应电势只有几毫伏,如要进行准确测量,要求转换器的输人阻抗远远大于传感器的内阻,才能保证仪表的精度。电磁流量传感器的内阻仅与被测介质的电导率和电极直径有关。高含水油的电导率随含水情况有所变化,因此,采用了专用前置放大器,相应地提高了转换器的输人阻抗,保证了测量精度。(3)转换器实现智能化。智能电磁流量计采用了自动跟踪式励磁控制和智能反馈式信号放大处理技术,使用了多CPU协同信息处理的方法,使仪表在功能上具有了支持各种传感器匹配与校验、数字与模拟的系统连接、自诊断和安装调试测试、断电信息保护、在线信息查询、软件冲击自动恢复、多单位多形式的计量显示选择等全方位的智能化功能,操作使用十分方便。(4)改进型电磁流量计的主要技术指标。①适应的场所:转油站、联合站的高含水油计量,因为这些场所的高含水油经过油气分离,流态比较稳.定,含水波动较小,计量精度能够保证;②被测介质的含水率:>80%;③工作压力:≤2.5MPa;.④被测介质温度:≤100℃;⑤传感器衬里:可根据被测介质的温度选择不同的衬里。高含水油的温度一般在50~70℃,选择耐油橡胶衬里可满足计量要求;⑥口径依据被测液量的满量程流量来选择。电磁流量计的流速下限为0.5m/s。一般流量测量以2m/s为经济流速,而在高含水油测量时,流体的流速要求偏高一些,一般3~4m/s,这样可以避免低流速时原油附着于测量管壁及电极上,保证正常计量。.智能电磁流量计离不开良好的显示界面。我们采用128*64的图形点阵液晶显示模块来显示累积流量、瞬时流量等数据信息。液晶显示模块(LCM),是将液晶显示器件、驱动及控制电路、以及温度补偿、驱动电源、背光等辅助电路组合在一起的一种相对独立的显示器件和设备。通常液晶显示器件本身引线众多,而且要将这些引线与驱动、控制等电路连接才能用于显示信息,因此生产厂家在制造液晶显示器件的同时,也将与之对应的驱动、控制等电路做成PCB板,然后用压框和导带或导电橡胶将液晶显示器件固定在PCB板上,从而组合形成液晶显示模块。图3.10是我们采用的MSC.G12864DYSY-1W型液晶模块的外部尺寸图。  图3.11MSC.G12864DYSY-1W型液晶模块的结构图,由图中可以看出电磁流量计液晶模块集成了两个KS0108B显示驱动控制器和一个KS0107B显示驱动器,两个KS0108B分别控制左右两个半屏(64x64)像素点的显示,KS0107B作为64行的行驱动控制。德国VSEAHM01-2S G1/8N流量计生产  热式气体质量流量计按结构可以分为热分布型和浸入型。热分布型热式流量计将传感元件放置于管道壁,传感元件经过加热温度高于流休温度,流体流经传感元件表面导致上下游温度发生变化,利用上下游温度差测量流体流量,一般用于微小流速气体流量的测量。   热分布型热式流最计的T.作原理如图1所示,传感元件由上游热电阻、加热器利下游热电阻组成,加热器位于管道中心,使得传感元件温度高于坏境温度,上游热电阻和下游热电阻对称分布于加热器的两侧。图1中曲线1所示为管道中没有流休流过时传感元件的温度分布线.相对于加热器的上下游热电阻温度是对称的。当有流体经过热式传感元件时,温度分布为曲线2,显然流体将上游部分的热量带给下游,导致上游温度比下游温度低,上下游热电阻的温度差△T反映了流体的流量,即△T=f(m)。当流体流速过大时,上下游热屯阴的温度差△7趋向于0,因此热分布型热式气体质量流量计用于测量低流速气休微小流量。气体质量流量qm可表示为 式中:Cp-一流体介质的定压比热容;A一热传导系数;K一一仪表系数。   浸入型热式流最计的工作原理如图2所示,一般将两个热电阻置于中大管道中心,可测量中高流速流体。热电阻通较小电流或不通电流,温度为T;另一热电阻经较大电流加热,其温度T高于气体温度。管道中有气流通过时,两者之间的温度差为△T=Tv-T0气体质量流量qm与加热电路功率P、温度差△T的关系式为   式中:E一系数与流体介质物性参数有关;D一与流体流动有关的常数。   如果保持加热电路功率P恒定,这种测量方法为恒功率法;如果保持温度差△T恒定,这种测量方法为恒温差法,两种方法有各自的优缺点,使用时据具体环境和需要而定。目前较普遍的是采用恒温差法,由于需要不同的应用领域,恒温差法已不适用于某些场.合的测量,因此恒功率法应用领域越来越广泛。恒温差法的基本原理是流体流过加热的热电阻表面使得热电阻表面的温度降低,热电阻的阻值变小。反馈电路自动进行处理,通过热电阻的加热电流变大从而使得热电阻温度升高,即可使得热电阻与流体温度差恒定。通过测量传感电路的输出电流或输出电压便可获得流量值。恒功率法的基本原理是加热功率为恒定值,管道内没有流体流过时温度差△7最大,当流体流过热电阻表面时热电阻与流体温度差变小,通过测量△T便可得到流体流量。在电磁流量计设定状态下(如何进入设定状态请参照前述操作),用▲或▼键上下翻屏查找,直到屏幕出现仪表量程设置字样,按右键确认键确认进入仪表量程设置,输入20mA对应的最大流量值(输入量程值时可按▲键对光标处数字加1或用▼键对光标处数字减1,移位时要先按左键复合键再同时按▼键光标右移1位选数位或先按左键复合键再同时按▲键使光标左移1位选数位),最大流量值输入完后,按右键确认键确认返回。(若按右键确认键不放,持续3秒钟则直接返回到显示状态,若要继续设定其它参数,按▲键.)(分体式仪表中若口径与量程选择不当屏幕下行将出现“错误”字样提示用户)  在电磁流量计设定状态下(如何进入设定状态请参照前述操作)用▲或▼键上下翻屏查找,直到屏幕出现流量方向选择字样,按右键确认键确认进入流量方向选择设置,再用上键▲选择正向或反向按右键确认键确认返回。(若按右键确认键不放,持续3秒钟则直接返回到显示状态,若要继续设定其它参数按▲键。(注:改变正负号也可改变接线,将信号线正负调换,还可以将传感器调换安装方向.)  智能金属管浮子流量计的软件设计采用模块化编程结构,主要包括三个部分:输入模块、控制模块、输出模块。所有程序代码均采用C语言编写。  输入模块主要包括数据采集、滤波、温度补偿、非线性补偿和数值计算等,总体采用定时器中断方式,程序流程图如图2所示。输入模块中的非线性补偿程序采用分段线性拟合的方式来实现。通过采集9组或11组流量信号,作为拟合直线的端点,当前采样值按数据大小得到拟合曲线段的斜率和初始数据,代入拟合方程即可得到修正后的流量数据。  控制模块包括键盘处理程序和看门狗程序,键盘处理功能是通过中断方式设置标志位在置入参数子程序中实现的。金属管浮子流量计在通过总线组网,实现.上位机组态调试的同时,通过键盘,可以就地调试。  输出模块包括显示程序和通信中断服务程序。通信中断服务程序流程图如图3所示。智能电磁流量计测量精度不受流体密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。测量管道内无阻流件,因此没有附加的压力损失;测量管道内无可动部件,因此传感器寿命极长。只有当满管时才能获得准确的测量,避免以下安装位置:1.管道高点安装(易聚集气泡)2.直接安装在一根向下的管线的敞开出口前。3.智能电磁流量计注意不要在泵的入口侧安装流量管,以避免抽压而造成的对流量管衬里的破坏.当使用往复、横膈膜或柱塞泵时需要在安装脉冲节气阀.4.当向下管道长度超过5m时,在传感器后安装一个虹吸管或一个放气阀。以避免低压而可能造成的对测量管衬里的破坏。保证满管,减少含气量。  安装方位通常分为垂直安装和水平安装:  安装方位:适宜的方位可帮助避免气体的累积和测量管内的残渣存积。  垂直安装;这种方位对易自排空管道系统很理想,并可不加空管检测电极。  水平安装:测量电极平面必须水平,这样可以防止由于夹带的气泡而产生的电极短时间绝缘。注意:空管检测功能仅当测量装置为水平安装及变送器外壳向上时能正确工作。如果振动非常剧烈,应将传感器和变送器分开安装。  基座,支撑:如果公称直径为DN≥350,在能忍受足够负载的基座上安装变送器。注意不允许利用外框承住传感器的重量。这会使外框变形并破坏内部励磁线圈。如果可能,安装传感器避免例如阀门,三通,弯头等组件。  保证以下所需的进口和出口直管段以确保测量精度:入口长度>10×DN出口长度>5×DN传感器及变送器接地传感器处于管道中心位置  智能电磁流量计接地:传感器及介质必须有相同的电势用来保证测量精度及避免电极地腐蚀破坏。等电势通过在传感器内装地参考电极保证。如果介质在无衬里并接地地金属管中流动,它可通过连接到变送器外壳而满足接地要求。对于分离型地接地同上一样。

QQ咨询

在线咨询 真诚为您提供专业解答服务

咨询热线

13905314198
7*24小时服务热线

关注微信

二维码 扫一扫添加微信
返回顶部