德国VSEVTR1040流量计价格
编辑:admin
浏览量:59
发布日期: 2022-04-20 15:53
德国VSEVTR1040流量计价格同时我们还经营:孔板流量计是利用流体的动静压能转换原理进行流量测量的,这一-差压与流体流量存在如下关系: 式中:qm为质量流量,kg/h;qv为工况条件下的体积流量,m³/h;x为流量系数;e为流束膨胀系数;△e为差压,Pa;Q为工况条件下被测流体的密度,kg/m³;d为工况条件下的节流开孔直径,mm。由(1)式和(2)式可以看出,被测流体的流量是流体的密度和孔板前后差压的函数。当测得某一差压时,由于所测流体的密度不同,所代表的流量是不同的,只有当流体的密度值等于孔板流量计设计条件中的密度值时,差压才能真实反映所测的流量。蒸汽从发生到使用,由于热损耗,温度和压力的下降是不可避免的,导致其密度与设计值的差异,从而产生了误差,并且随着蒸汽参数的波动而波动,实际测量时只能通过温压补偿来修正,补偿公式的严谨性直接影响测量误差。智能电磁流量计离不开良好的显示界面。我们采用128*64的图形点阵液晶显示模块来显示累积流量、瞬时流量等数据信息。液晶显示模块(LCM),是将液晶显示器件、驱动及控制电路、以及温度补偿、驱动电源、背光等辅助电路组合在一起的一种相对独立的显示器件和设备。通常液晶显示器件本身引线众多,而且要将这些引线与驱动、控制等电路连接才能用于显示信息,因此生产厂家在制造液晶显示器件的同时,也将与之对应的驱动、控制等电路做成PCB板,然后用压框和导带或导电橡胶将液晶显示器件固定在PCB板上,从而组合形成液晶显示模块。图3.10是我们采用的MSC.G12864DYSY-1W型液晶模块的外部尺寸图。 图3.11MSC.G12864DYSY-1W型液晶模块的结构图,由图中可以看出电磁流量计液晶模块集成了两个KS0108B显示驱动控制器和一个KS0107B显示驱动器,两个KS0108B分别控制左右两个半屏(64x64)像素点的显示,KS0107B作为64行的行驱动控制。 管道式大口径流量计的在线校准方法,一般为标准表比对法、利用蓄水池作为测量容器的液位落差法和检测电气参数法,比如CJ/T364-2011《管道式电磁流量计在线校准要求》中,规定了标准表比对法和电气参数检测法。在不得已情况下采用验证方法,如经常采用的物料平衡法、热量平衡法、设备能力法、流量增量验证法等。近年来发展起来的非实流法校准液体超声流量计的现场校准方法,主要是通过测量声速来实现液体超声流量计现场校准,适用特大口径的流量计,如国家颁布实施的JJF1358--2012《非实流法校准DN1000~DN15000液体超声流量计校准规范》。 本文在线校准试验采用1.0级夹装式时差法.超声流量计作为标准表,被测流量计是管道大口径电磁流量计,校准测量时间为20~30min。在线校准方法参照JJG1033--2007《电磁流量计检定规程》和CJ/T364-2011《管道式电磁流量计在线校准要求》。2012年、2013年的部分试验结果如表2所示,其余约60台电磁流量计的试验结果以计量误差分布图给出,如图1所示。 从表2和图1中可以看出,其计量误差大部分在±5%左右,但有的误差甚至超过±10%,最大的计量误差接近±20%。究其原因,除流量计选型有误(实际管道流速在电磁流量计规定流速的下限附近或以下),安装不规范.(如阀门件扰流等),直管段不足和存在非满管流等缺陷需要进行改造外,还有现场在线校准.时诸多因素的影响。日常工作中如果正确保养涡街流量计,可以有效延长其使用寿命,并减少故障发生,具体方法如下:1)涡街流量计由于K系数的确定在涡街的整个环节中非常重耍,K系数的准确与否直接影响着回路的准确度,仪表更换零部件以及工艺管道的磨损等情况,均可能影响K系数.而很多化工厂又缺少标定的手段与能力,只能送出标定,受工艺运行的影响,要从管道上拆下涡街送出要5、6天的标定时间,工艺方面很难满足,从而无法确定K系数。今年,通过流量仪表间的改造,虽已经具备了较小口径的涡街标定条件,但对于较大口径的涡街仍然无能为力,以后应注意使用涡街的现场标定方法,孔板流量计使用标准频率以及便携式超声波流量计,测出管道中的瞬时流量以及传感器的脉冲输出频率,现场计算K系数。2)涡街流量计应定期清洗涡街流量计的探头,检查中曾发现,个别探头检测孔已被污物堵塞,甚至被塑料布裹住,影响了正常测量。3)涡街流量计定期检查接地和屏蔽情况,消除外界干扰。有时候指示问题是由于受到干扰所至4)涡街流量计安装环境潮湿的探头.应定期烘干一次,或作防潮处理。由于探头本身并末作防潮处理,受潮之后影响运行。5)涡街流量计的数据资料的管理应引起足够的重视,孔板流量计以利于日后的工作。

德国VSEVTR1040流量计价格为保证超声波流量计流量测量精度,选择测量点时要求选择流体流场均匀的部分,一般应遵循下列原则:1、被测管道内流体必须是满管。2、选择被测管道的材质应均匀质密,易于超声波传播,如垂直管段(流体由下向上)或水平管段(整个管路中最低处为好)。3、安装距离应选择上游大于10倍直管径,下游大于5倍直管径(注:不同仪器要求的距离会有所不同,具体距离以使用的仪器说明书为准)以内无任何阀门、弯头、变径等均匀的直管段,测量点应充分远离阀门、泵、高压电、变频器等干扰源。4、充分考虑管内结垢状况,尽量选择无结垢的管段进行测量。外夹式流量计传感器安装要点 时差式超声波传感器安装方式有三种,分别是V法、Z法和W法,如图3所示。 测量时采用何种安装方式,仪器说明书均有规定,但在边界范围一般比较模糊。如TFX1020P时差式超声波流量计:V型安装法适用测量管径25~400 ㎜,Z型安装法适用测量管径100~2540㎜,W型安装法适用测量管径65㎜以下小管。V型与Z型、V型与W型在适用测量管径均有部分重叠,如遇此情况 则按下列原则选择最佳安装方式:V型安装一般情况下是标准安装方式,使用方便,测量准确。当被测管道很粗或由于被测流体浊度高、管道内壁有衬里或结垢太 厚,造成V型安装信号弱,仪表不能正常工作时,选用Z型安装。原因是使用Z型安装时,超声波在管道中直接传输,没有折射,信号衰耗小。W型安装适于小管, 通过延长超声波传输距离的办法来提高小管测量精度,如图3(c),使用W型安装时,超声波束在管内折射三次,穿过流体四次。 流量传感器安装方式有两种,分别是对称安装和同侧安装。对称安装适用于中小管径(通常小于600㎜)管道和含悬浮颗粒或气泡较少的液体;同侧安装适用于各种管径的管道和含悬浮颗粒或气泡较多的液体。外夹式超声波流量计传感器安装要求1、剥净测量点处附近保温层和保护层,使用角磨砂轮机、锉、砂纸等工具将管道打磨至光亮平滑无蚀坑。要求:漆锈层磨净,凸出物修平,避免局部凹 陷,光泽均匀,手感光滑圆润。需要特别注意,打磨点要求与原管道有同样的弧度,切忌将安装点打磨成平面,用酒精或汽油等将此范围擦净,以利于传感器粘接。2、在水平管段上,两个传感器必须安装在管道轴面的水平方向上,并且在轴线水平位置±45°的范围内安装,以防止管内上部流体不满、有气泡或下部有沉淀等现象影响正常测量,如图5所示。3、传感器安装处和管壁反射处必须避开接口和焊缝,如图6所示。4、传感器工作面与管壁之间保持有足够的耦合剂,不能有空气和固体颗粒,以保证耦合良好。涡街流量计由壳体、漩涡发生体和放大器组成.一种典型的结构如图4所示,壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号. 涡街流量计是一种无运动部件的流量计,按其原理分类属于振荡型流量计.同属于这类流量计还有漩涡进动型流量计;振荡射流型流量计.由于涡街流量计不含有运动部件及对流体冲刷敏感的部件,因而在使用过程中,可靠性高,使用寿命长,并具有一般节流式流量计的优点,精确度稳定,再现性好.在大批量生产和工艺稳定的条件下,可以采用“干校验法”,即不必逐台仪表进行实液标定,可根据结构尺寸直接确定仪表常数及仪表精度.涡街流量计是‘种数字式流量计,它输出的脉冲信号的频率与流量成线性关系,同时具有量程宽、重复性好.便于远距离无精度损失的传输.此外仪表常数及精度不受介质的压力、温度、密度等变量的影响.一旦涡街流量计的结构确定.流体振荡就服从的客观规律,其振荡频率不能人为地改变,因而仪表常数及其变化规律是客观的. 由于金属管浮子流量计的测量管为机械结构.测最时对波动很敏感,经常会出现指针波动严重,甚至影响读数的情况。除了在测量管中加装气阻尼器之外,还可以在指针组件中增加电磁阻尼器,使指针摆动的频率、幅度大幅度降低,使指针指示稳定,刻度值读取变得容易,读取精度更高。 电磁阻尼器的工作原理。电磁阻尼器由磁钢、连接件、金属板等组装后为一体。指针的配重为导电金属铝合金,根据电磁感应定律,配重在磁场中运动,切割磁力线.必然产生感应电动势,从而在配重中产生涡电流;磁场对带电导体必然产生作用力,而此作用力恰好起到阻碍配重在磁场中运动的作用,配重运动的速度越大,产生的反作用也越大,其效果类似于阻尼器,从而使电磁阻尼器起到降低指针摆动频率、幅度的作用.达到稳定的效果。 与现有技术相比,通过增加电磁阻尼器装置,可有效改善金属管浮子流量计的使用效果,使指针的摆动频率和幅度大幅度降低,指针稳定指示,刻度值的读取变得容易,读取精度提高,既提高了效率也保证了精度。德国VSEVTR1040流量计价格简单几招解决涡轮流量计不准1、水源脉动流影响流量波动性比较大。 解决办法:增加泵和涡轮流量计之间的直管道距离,使流量稳定。2、涡轮流量计安装位置离阀门或弯管位置太近,当原料经过阀门或弯管部分,造成流量波动。 解决办法:此时应该远离阀门和弯管位置,保证一定的前后直管段是解决问题的好方法。3、涡轮流量计附近有电机,变频器,强电流之类的干扰源。 解决办法:流量计仪表接地,或加滤波电容。如果问题还是解决不了,最好的办法就是远离干扰源。4、涡轮流量计无流量显示:首先检查线路是否存在问题,如信号线脱落,有断线等。将传感器和信号放大器分离,信号放大器与仪表连接,用铁质金属在取信号的放大器底部距离2~3mm距离来回划动,如仪表有显示,则说明显示部分无问题。 解决办法:请将流量传感器从管道卸下,检查流量计叶轮是否被缠住或叶轮出现破损现象。5、流量计显示流量比实际流量小:一般造成这个问题的原因是叶轮旋转不滑快或叶片断裂。 解决办法:将流量计从管道拆除,检查流量计是否被缠住或有破损现象。6、涡轮流量计显示误差比较大:首先检查流量传感器系数即K值和仪表其他参数是否设置正确;有条件的情况下,用电子秤进行实际标定校准。 解决办法:如流量重复性差或根本无法校准,可与供货商联系。电磁流量计等节点设备和站内PC机间的通信采用异步串行通讯控制规程,并采用地址位唤醒握手协议.因此在协议中规定了传地址和传数据两种不同的帧格式,如图4.4所示.地址帧和数据帧都有11位,其中第l位和最后l位相同,分别为起始位和停止位,紧接起始位的是8位数据位,第9位为标志位,用来区分所发送/接受的帧信息是地址帧还是数据帧.第9位为1时,表示PC机发送/接受的是“地址帧":第9位为0时,表示主机发送/接受的是"数据帧".命令帧与校验和的发送格式与数据帧相同,因此可由数据帧演化得到.电磁流量计是一种用来测量导电介质体积流量的仪表。为了确保电磁流量计测量的准确性以及工作的稳定性,需要定期对其做一次全面检查,接下来开流仪表来给大家说说检查的具体内容。1.零点检查 整机零点检查的技术要求是:流量传感器测量管充满液体且无流动,通常转换器单独零点为负值,数值也很小;如果其绝对值大于满量程的5%就需要先做检查,待确认原因后再作调整。2.连接电缆检查 该项检查内容是检查信号线与励磁线各芯导通和绝缘电阻,检查各屏蔽层接地是否完好。3.转换器检查 该项检查内容是用通用仪表以及流量计型号相匹配的模拟信号器代替传感器提供流量信号进行调零和校准。校准包括零点检查和调整,设定值检查,励磁电流测量,电流/频率输出检查等。4.电磁流量计传感器检查 测量励磁线圈的电阻,测量电极接液电阻以评估电极表面受污秽和衬里附着层状况;检查各部位绝缘电阻以判断零件劣化程度,以估算清洗附着层前后因流动面积变化引入的流量值变化。流量积算仪主要用于各种液体、蒸汽、天然气及其他气体的流量测量。由于流量积算仪功能多,使用非常复杂,使用时容易出现问题。一、设置中易出现的问题1.介质及介质状态的设置(1)错误地设置介质,例如,当介质为蒸汽时,设置为空气。(2)错误地设置介质状态,例如,当蒸汽状态为过热蒸汽时,设置为饱和蒸汽。2.流量信号输入的设置 一般为频率信号输入,也有模拟信号输入。容易出现的问题是输入错误的信号,如本应输入频率信号却输入了模拟信号,或本应输入模拟信号却输入了频率信号。3.温度、压力信号输入的设置 温度信号输入一般是模拟信号,可以设置为(4~20)mA电流信号、(0~l0)mA电流信号、(1~5)V电压信号、Pt100铂电阻信号。容易出现的问题是设置了错误的信号,如本应设置模拟信号却设置了频率信号,或本应设置铂电阻信号却设置了(4--20)mA电流信号。 压力信号输入一般是模拟信号,可以设置为(4--20)mA电流信号、(0~10)mA电流信号、(1~5)V电压信号。容易出现的问题是设置了错误的信号,如本应设置(1~5)V信号却设置了(4~20)mA电流信号。4.配套流量计的设置 通常可以设置为孔板流量计、涡街流量计、涡轮流量计。由于流量计原理不同,因此,在流量积算仪的流量计算中.不同类型的流量计有不同的算法,如果流量计选型错误,则流量计算必然出错。5.温压补偿的设置 应用在蒸汽介质流量计量时,需进行温压补偿。例如一台流量积算仪,当用于过热蒸汽时.需要同时进行温度补偿和压力补偿;当用于饱和蒸汽时,由于一一对应关系,只能对其中一个输入信号进行补偿,根据现场情况,只选择温度补偿或只选择压力补偿。如果应用在天然气介质流量计量中.需同时进行温度补偿和压力补偿。6.输入信号范围的设置 温度输入信号、压力输入信号、流量输入信号分别设置自己的测量范围,流量积算仪设置的流量测量范围、温度测量范围、压力测量范围应分别大于现场的流量范围、温度范围、压力范围。例如,设置最大流量1O00m3/h,但实际测量流量为2000m3/h,超过了积算仪中设置的流量测量范围,则流量计算出错。二、接线时易出现的问题 对于不同的输入信号.需要选择不同的接线端子。但在实际应用中,由于操作比较复杂,接线时容易出现错误。例如流量积算仪使用在饱和蒸汽下,流量积算仪内部设置为温度补偿,而在实际接线时将压力输入信号作为补偿信号接到流量积算仪,造成接线错误,从而造成流量计算错误。 综上所述.要正确使用流量积算仪,需要专业人员严格按照现场操作条件进行设置和接线,以保证流量积算仪的正确使用;同时,流量计量人员应按照用户要求.模拟流量积算仪现场使用条件进行流量积算仪的检测。电磁流量计外壳用不锈钢,测量管内壁用聚四氟乙烯,转换器封闭在一个长方体金属壳内,内部电路板上有一四位数的数据盘,可作测量值的指示器。变送器与转换器之间通过两根电缆连接,变送器安装在管道上,转换器固定在旁边的框架上。这种流量计无论零点还是量程都不能白行调整,只能在指定厂家标定,使用很不方便。该流地计投用运行还未到-年,指示便出现了故障经检查发现变送器电路板发生腐蚀,有几只晶体三极管管脚已经锈断,当时并没有引起我们足够的重视,只是更换几只三极管便又重新装上,这样修复后该表又运行几个月,然后又失去指示。当我们再次检查该表时,发现变送器的电路板及电缆已全部腐蚀掉,于是该表报废。这才引起我们的警觉,原来因该表安装的地方离高压甲铵泵及高压氨泵太近,停车时排放的及平时泄漏的氨和甲铵以及夹带的氨气常环绕在该表周围,致使该表一直工作在腐蚀性环境中,加上我们只注意该表的耐腐蚀特点,而忽略该表的脆弱性,最终导致该表的损坏。 在安装时,为防止腐蚀性气体侵入电子室,在接线盒盖边缘及电缆接头处全部用硅橡胶密封,并用水电两用胶带加以封固,以达到防腐的目的。该表投用后运行一年多时间,便再次发生了同样故障,变送器电路板及电缆又被腐蚀,表又损坏。 事故的不断发生,使我们对腐5蚀问题进行仔细的思考,为什么变送器密封那么好还会腐蚀?而与变送器仅半米之遥的转换器却安然无恙?经过仔细的观察和分析,发现安装变送器的管道因流速高,一直在不停地轻微震动,密封胶很容易松动而脱落,不停的震动又为氨气的侵入增加了助动力,而固定在框架上的转换器,由于没有震动,各密封口完好,因此没有腐蚀。 找到了出故障的原因,也就找到了排除故障的措施。这种电磁流量计较前两种要先进得多,它采用微处理器技术,在转换器上有一双排液晶显示器,在显示器下边有三个按钮,通过它们可以对流量计的参数进行组态设定,并可翻看流量计的有关参数设置。该表具有比较强的外部通信接口能力,能以模拟和数字方式与其它外设通信,并带有很强的自诊断功能,参数的输入及选择以数据直接输入及主副菜单选择方式进行,可方便地进行零点调整和量程设定,操作十分方便。为了保证这块表能安全运行,我们在吸取前两次教训的基础上,采取另-种防腐措施即吹气防腐法。这种方法的原理是设法使变送器接线盒内纯净气体压力增大,致使有害气体不能侵入接线盒内,从而达到防腐目的。具体方法是在电磁流量计的电子室上打两个小孔,一个进气,一个排气,然后接上仪表空气,让空气保持微小流量,电子室内纯净气的压力高于大气压,气流只能从孔隙由内向外流动,从而阻止有害气体的侵入,起到防腐作用。该表投入运行后,效果一直很好,在时隔两年的1994年大修中,打开电子室检查,没有发现腐蚀,可见吹气防腐确实起到了作用。