德国VSEAP1流量计原厂
编辑:admin
浏览量:59
发布日期: 2022-04-29 16:36
德国VSEAP1流量计原厂同时我们还经营:涡轮流量计利用置于流体中的叶轮的旋转角速度与流体流速成比例的关系,通过测量叶轮的转速来反映通过管道的流体体积流量大小,是流量仪表中比较成熟的高准确度仪表之一。 流量计内有经过精密加工的叶片,它与一套减速齿轮和轴承一起构成测量组件,支撑涡轮的两个不锈钢自润滑轴承,保证该组件有较长的使用寿命。流量计亦可选用外部润滑油泵润滑轴承,但注意不能过量。 流量计露天安装,由于流量计大部分是电子显示,表头内有电路板,长期露天放置,容易造成电路板损坏受潮,液晶屏不显示,或者烧坏电路板。建议安装计量仪表防护装置。 涡轮流量计在安装过程中,不能敲打表具。流量计受硬力冲击,导致表具损坏。安装流量计前,一定要吹扫,吹扫过程中一定不能带着表具,管道中的焊渣容易打坏涡轮流量计的叶轮,造成表具不计量或者计量不准确。 为了保证流量计检修时不影响介质的正常使用,在流量计的前后管道上应安装切断阀门(截止阀),同时应设置旁通管道。流量控制阀要安装在流量计的下游,流量计使用时上游所装的截止阀必须全开,避免上游部分的流体产生不稳流现象。 涡轮流量计在使用前一定要加润滑油,但是不能加多,在燃气气质并不是太干净的环境中,润滑油过多容易使气质中的杂质粘附在卡箍式涡轮流量计的叶轮上,从而造成计量不准确,时间长了,容易磨损表具。1.仪表安装不符合要求造成计量误差 旋进漩涡流量计的使用过程中,最关键的是要保障计量的精度,安装质量是影响计量准确性、运行可靠性的重要因素。在实际的安装过程中,现场的安装人员往往会存在安装的不规范行为,而这种情况会导致计量的准确性不足,比如,在安装现场,仪表前后管线存在缩径现象,过近的安装距离会导致最终的计量结果偏大,计量与实际的误差非常大。此外,在安装过程中,安装人员的专业素质偏低,在实际的安装过程中,缺乏安装全过程的质量控制、细节管理,同样会造成严重的计量偏差。2.被测气量不稳定造成计量误差 旋进漩涡流量计的计量介质性质相对特殊,如果在实际的计量过程中,被测气量难以保持稳定性,将会影响计量结果的准确性。旋进漩涡流量计的运行过程中,存在着较大的压力损失,当在单井计量的过程中,伴随着一定气流量的产生,由于在此情况下气源的气体量相对较小,一旦气压降低到特定的值时,旋进漩涡流量计就无法及时将气量准确计量出来。在一些特殊的情况下,气量会随着时间呈现出或大或小的变动,而这种不稳定的变动趋势使得计量的难度系数增大,当属于脉动流体时,在计量过程中一旦出现随机脉动压力,将会对流量计造成一定的冲击,进而导致计量的精度不足。3.管线振动造成仪表误差 当流量很小的情况下,旋进漩涡流量计的计量结果难以保障。在实际的计量过程中,常常会存在工艺管道的振动现象,一旦在流速较小的情况下,流量计的仪表难以保持正常的输出状态,计量精度大大降低。旋进漩涡流量计使用过程中最常见的问题就是计量误差,这种误差常常是由多种因素所造成的,管线振动是其中的一个关键因素,当管线出现异常情况时,压电传感器能够活动振荡变化所引起的各种参数变化,此时,必然伴随着信号的输出,也就难以保障计量结果的准确性。4.不干净的测量流体介质造成计量误差 随着旋进漩涡流量计计量工作的开展,在流量计内必然会伴随着大量油污等杂物的存在,有时甚至会存在腐蚀与损坏现象,而这些情况会导致在计量过程中出现酸化与压裂现象的概率进一步增大,导致计量值远低于实际值。旋进漩涡流量计的计量工作中,要保障介质的洁净性,否则,一旦介质中存在饱和水蒸汽,当遇到温度过低的情况时,将会伴随着水凝结现象的出现。在计量过程中,如果计量分离器存在气路跑油的情况,在管线内会形成大量的积液;如果介质内存在污油、砂粒等杂质,在计量的过程中,可能会出现漩涡发生体表面杂质的黏结现象,最终影响计量结果的准确性。电磁流量计的特点 电磁流量计的原理决定了其具备如下特点:1.传感器内既没有叶轮,也没有旋涡发生体和探头,因而也就从根本.上避免了回收水中的杂物、泥沙等对叶轮的缠、卡及对旋涡发生体和探头的包围等因素造成的计量不准或计量停止的现象。2.测量不受被测液体的密度、粘度、温度、压力和导电率变化的影响,.所以特别适用于尾矿回收水这种泥沙浓度随回收水t多少而变化的液体的测量。3.传感器电极结构多样化,可根据不同的应用条件选择叮拆卸式、固定式和刮刀式电极,特别是刮刀式电极,可在不停被测介质的情况下对电极进行清理,应用起来非常方便.4.安装方便,可水平、垂直或倾斜任意角度安装,对下游直管段要求较低,且衬里和电极有多种材料可供选择,所以有耐腐蚀和耐磨等特点。5.仪表采用了:态方波励磁技术,先进的小信号处理技术和软件技术,抗干扰性能强,精度稳定可靠。6.仪表不能测址气体、油品、有机溶剂等不导电介质。电磁流量计应用与效果我们在安装使用过程中,除了满足常规的要求外,着重强调了如下几点:1.选择的安装地点保证了电磁流量计在计量时传感器内时刻注满介质,且上游有5D,下游有2D以上的直管段,有足够的安装检修空间;2.安装流量计时做了面积约2m²的接地网,.接地网离地面要有足够的深度,并在掩埋接地网时撒了部分工业用NaCI以确保传感器接地电阻小于102;3.由于安装地点离电机和配电盘较近,为防止电磁干扰,我们把整个一体式流量计用铁箱全部罩住进行了屏蔽,并将屏蔽铁箱单独可靠接地(抄读数字时打开铁箱读数);4.在使用过程中,每半年清理一次传感器电极,以防止上面的污垢影响信号的输出。电缆接头中的保护塞只能在准备安装电缆时拆除. DN3至DN8[1/10"至5/16"]的法兰型电磁流量计传感器,应采用DN10[3/8"]的配对法兰.这样DN3,4,6或者8[1/10",5/32",1/4"或者5/16"]的管道就会与仪表成为一体. 此外,DN3至DN8[1/10"至5/16"]法兰型传感器, 还可使用DN15[1/2"]的配对法兰. 石墨不可用于法兰或者工艺连接件垫圈,因为在一定条件下,仪表管道内部可能形成导电涂层.管路中应避免出现真空冲击,以防止可能对衬里(PTFE)以及仪表造成的损坏.配对法兰的垫圈表面 安装中,平行配对法兰的垫圈材料必须适于介质和操作条件.只有这样才可以避免泄漏.为了确保最佳的测量结果,须保证传感器垫圈应法兰同心.保护板 保护板用于防止衬里的损坏.只有在传感器将安装在管路中时才可以拆除保护板.必须谨慎小心,确保衬里未在安装过程中脱落或者损坏, 造成泄漏.法兰螺栓紧固扭矩 安装螺栓应按照通常的方式平均紧固,不可在电磁流量计某一侧过度紧固.我们建议螺栓在紧固之前添加润滑油,并交叉紧固,如上图一所示. 在第一轮紧固过程中,螺栓拧紧50%,在第二轮中提高至80%,最后使用最大扭矩紧固.不应超过最大扭矩见表一,表二

德国VSEAP1流量计原厂流量计准确度影响的实验分析 1实验要求 实验用钟罩式气体流量计标定装置标定DN50G65气体涡轮流量计,其准确度等级为1.5级;最小流量为Qmls:10m'/h,最大流量为Qmax:100m³/h;流量计量程比为1;10;上游直管段要求:5D=50X5=250mm=25cm,'下游直管段要求:3D=50X3=150mm=15cm. 2实验思路 实验以在流量计前端安装一对大小头作为扰流件,在扰流件和流量计之间安装不同长度的直管段。经过一定时间段的运行,确认标准裝置与流量计的流量偏差以及疣量计的重复性,以此分析扰流件对流量计准确度的影响。 3实脸分析 3.1在流量计.上游安装40cm直管段,下游安装19cm直管段实验 流量计上游直管段长度大于5D(25cm),下游直管段长度大于3D(15cm),实验安装图如图1所示,示意图如图2所示。 实验数据如表3所示。 从表3可以看出,扰流件安装在距流量计上游端较远时,其运行数据的流量偏差与重复性符合流量计的国家标准。 3.2在流量计上游安装29.1cm直管段,下游安装19cm直管段实验 流量计上游直管段长度较大于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图3所示. 实验数据如表4所示。从表4可以看出,扰流件安装在距流t计上游端接近5D处时,其运行数据的流量偏差(qmin≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。 3.3在流量计上游安装19cm直管段,下游安装40cm直管段实验 流量计上游直管段长度小于5D(25cm),下游直管段长度大于3D(15cm),实验安装示意图如图4所示 从表5可以看出,找流件安装在流量计上游端小于5D处时,其运行数据的流量偏差(qai≤q≤qt部分)>3%,不满足国家标准的要求,但其重复性符合流量计的国家标准。 涡街流量计是基于流体力学中著名的“卡门涡街”研制的。在流动的流体中放置- -非流线型柱形体,称旋涡发生体,当流体沿旋涡发生体绕流时,会在涡街发生体下游产生两列不对称但有规律的交替旋涡列,这就是所谓的卡门涡街,如图1所示。 大量的实验和理论证明:稳定的涡街发生频率ƒ与来流速度v1及旋涡发生体的特征宽度d有如下确定关系叫: 式中St为斯特罗哈数,与雷诺数和d相关。 当雷诺数Re在一定范围内(3 X102~2 X105)时(4],St为一常数,对于三角柱形旋涡发生体约为0.16 雷诺数的定义为 式中S为管道的横截面积。 由高精度气体涡街流量计的测量原理可知,通过测量旋涡发生频率仅能得到旋涡发生体附近的流速vI,由式(3)可知在横截面积一定的情况下,流体的流量Q与流体的平均流速v成正比,因此要精确计量流体的流量必须找到`v与v1的对应关系。 根据流体力学理论,在充分发展的湍流状态下,流体的速度分布有如下关系式川: 式中:vp为到管壁距离为y的P点的速度;y为点到管壁处的距离;Vmax:为管道中的最大流速,通常取管道中心的速度;R为管道的半径;n为雷诺数的函数。 表1中给出了部分雷诺数与n的对应关系。 由于旋涡发生体的位置固定,因此当雷诺数一定时v1与`v有固定的比例关系换言之,当雷诺数Re变化时,二者的比值也发生变化, 图3给出了不同雷诺数下充分发展的湍流的流速分布,如图所示Re越大,流速分布越平滑,即旋涡发生体附近的流速越接近平均流速,故ƒ( Re)应为单调递减函数。图4给出了3台50mm口径,宽度14 mm三角形旋涡发生体的气体涡衔流量计,在20℃,一个标准大气压下,不同雷诺数下的K值曲线。如图所示实验数据与理论分析基本一致,因此涡衔流量计的测量原理即决定了仪表系数的非线性特性。若要提高涡街流量计的计量精度,必须针对不同的流速分布对K值进行修正。1.一般要求:●供电电缆与电磁流量计信号电缆分开铺设,电缆槽分开,穿线管分开.●电缆进入一次表采用挠性防爆软管或者波纹管进行保护.护线帽和密封接头要拧紧,必要时加防水胶带做二次保护.穿线管检查是否有毛刺,如果穿线管较粗,则采用防火胶泥进行封堵.●电缆在入口处留出U型弯,同时穿线管出线口要低于表头,防止雨水进入表头.●动力电缆如果为单股铜芯则可以不用压线鼻子,但是必须标识零线,火线及接地线及来线位置.●信号电缆一般为多芯软线,必须压线鼻子或者涮锡,同时标识位号及来线位置.在系统侧电缆留有一定余量,屏蔽层在系统侧单侧接地.●无论供电电缆还是信号电缆,在接线前必须进行校线.●现场一次表入水口及出水口双侧接地.接地线采用绿,黄双色线,确保接地牢靠,同时接地极为等电位.2.详细接线说明: 电磁流量计接线一般有以下几种信号:供电接线,4~20mA信号输出,上限报警输出,下限报警输出,通讯信号等●电磁流量计一般采用220V交流供电或者24V直流供电.本项目污水流量计采用220V交流供电.●该电磁流量计为四线制,自控系统卡件接收4~20mA信号按照四线制方式连接.●上,下限报警输出均为二次表内集电极开路输出,为无源输出,自控系统DI卡输出24V.实际设计时报警信号不接入自控系统,在自控系统内对瞬时流量设置高,低限报警值.●通讯信号一般采用485通讯.采用两线制带屏蔽通讯专用电缆.●如果采用脉冲信号,则需要自控系统提供脉冲卡件.本项目从成本角度考虑采用4~20mA信号.日常工作中如果正确保养涡街流量计,可以有效延长其使用寿命,并减少故障发生,具体方法如下:1)涡街流量计由于K系数的确定在涡街的整个环节中非常重耍,K系数的准确与否直接影响着回路的准确度,仪表更换零部件以及工艺管道的磨损等情况,均可能影响K系数.而很多化工厂又缺少标定的手段与能力,只能送出标定,受工艺运行的影响,要从管道上拆下涡街送出要5、6天的标定时间,工艺方面很难满足,从而无法确定K系数。今年,通过流量仪表间的改造,虽已经具备了较小口径的涡街标定条件,但对于较大口径的涡街仍然无能为力,以后应注意使用涡街的现场标定方法,孔板流量计使用标准频率以及便携式超声波流量计,测出管道中的瞬时流量以及传感器的脉冲输出频率,现场计算K系数。2)涡街流量计应定期清洗涡街流量计的探头,检查中曾发现,个别探头检测孔已被污物堵塞,甚至被塑料布裹住,影响了正常测量。3)涡街流量计定期检查接地和屏蔽情况,消除外界干扰。有时候指示问题是由于受到干扰所至4)涡街流量计安装环境潮湿的探头.应定期烘干一次,或作防潮处理。由于探头本身并末作防潮处理,受潮之后影响运行。5)涡街流量计的数据资料的管理应引起足够的重视,孔板流量计以利于日后的工作。一.和其它流量计一样, 虽然电磁流量计它的测量范围比是30:1, 比涡街流量计和差压式流量计都要高, 但也是有限制的,许多客户定表时,常常把它和水表相比较,以为可以测量很低的流速,一般情况下,它只能测0.1m/s.低于此流速电磁流量计就很难正确测量.所以定货初期对流量范围比要搞清楚.定货时不能按原先管道口径来定货,最好按你实际流量来定仪表口径。二.和其它流量计一样,电磁流量计对安装前后直管道也有要求,只不过比其它类流量计要求更低,但最关健一点要满足:就是满管, 再满管.不满管的情况下容易引起流量计乱跳:三.和其它流量计一样,电磁流量计也有防护等级,一般一体式的防护等级为IP65,分体式的为IP68(针对传感器而言), 如果客户对仪表安装环境有要求,安装地点在地下阴井或其它一些潮湿的地方,建议客户选用分体式的.以免选错对仪表造成损害。四.电磁流量计可以测腐蚀性液体,但定货初期客户要正确提供其它测量介质属性,以免选型时对电极选型上的错误,导致传感器在后期使用过程中报废,给客户带来不便和经济上的损失。五.电磁流量计虽说可靠性比较好,一般情况下不会损坏,但由于其原理决定,传感器电极表面一直和液体接触,时间久了,电极表面比较容易受污染。所以电磁流量计一般情况下,客户有条件拆的情况下,建议一年到一年半之间拆出来清洗一次电极以保证流量计整机的测量精度。任何仪器仪表都是需要“保养”的,电磁流量计也不例外。六.在主管线是垂直管线时,一般情况下,要求水流是自下而上,尽量不要自上而下。后者容易引起流量波动比较大。安装除了满管以外,这点也是很重要的,其次就是前后直管道的距离了。 很多天然气用气小户,其用气特点为:瞬时流量较小或流量波动幅度较大.旋进漩涡流量计可作为用气小户交接计量的首选。下面是直接影响旋进漩涡流量计准确度的常见因素:(1)旋进漩涡流量计是通过测量漩涡频率来计量流量的,流量计前有节流件。节流件会对气流产生扰动,比如流量计前安装调压阀致使计量值波动较大,将调节阀装到流量计后面后,流量就平稳很多。(2)用旋进旋涡流量计计量气井气或油井伴生气这些未经处理的天然气时,由于气中带液较多,对传感器的冲击腐蚀作用较强,容易造成损坏或磨损.另操作不当还会造成部件损坏,比如开关阀门过猛,,打坏旋涡发生体等。(3)应安装适合流量范围的流量计以满足上限流量和下限流量的使用。对有条件的用户可装大.小口径两台流量计,随供气大小倒换使用。(4)计量不准.难以发现。由于旋进漩涡流量计不像孔板流量计那样,各个测量部件都可以通过检查判断故障,旋进漩涡流量计在一体化设计、维护量低的优势下同时存在故障难以判断的弊端。在不知道用户具体用气量.流量计上压力、温度显示正确的情况下,很难判断流量计上所显示气量的准确性,只能到检定部门用标准装置进行检测判断。有厂曾出现流量计已经不准而未及时发现的情况,这种情况很容易产生计量纠纷。电磁流量计是灌浆过程的主要工艺流程,为在施工中进行有效的控制,需对施工过程中的水和水泥浆液进行计量和控制。 钻孔、洗孔:灌浆施工首先要在岩层中自上而下分段进.行钻孔,待单孔终孔,用大量清水洗孔,至回水变清,无流量测量点,故不展开讨论。 简易压水试验:洗孔结束,下孔口管,密封孔口,以设计要求的压力向孔内送水,测定其相应的流量值,并据此计算岩体的透水率。计算结果关系到岩体渗透特性的评价以及灌浆成果资料整理。这一-测量点是十分重要和敏感的,准确是首要指标,水有一-定的电导率,满足电磁流量计的测量要求,需要重点考虑的是电磁流量计的口径,因为压水试验和灌浆用的是相同的电磁流量计. 灌浆:压水试验后,灌浆泵将一定水灰比(比如3:1,2:1,1:1,0.81,0.5:1)的水泥浆液压送到孔中,--部分进入裂隙而扩散,余下的浆液经回浆管返出孔外,流回到浆液搅拌机中,在规定的压力下,当注入率不大于0.4L/min时,继续灌注30min;或不大于1L/min,继续灌注60min,灌浆可以结束。每台钻孔设备都需要两台电磁流量计分别记录进、返浆流量,灌浆量就等于进浆量减去返浆量,现场管线与电磁流量计安装布置见图3。 由于现场灌浆泵泵量多为6m³/h(100L/min),故电磁流量计的量程选为100L/min,由电磁流量计的测量原理可知[4],其流速的下限由.同噪声或偏移的信噪比S/N(信号与噪声)来决定,上限则由测量管内衬里的磨损和配管的经济速度等来决定印。由于水泥浆液中带有水泥固体颗粒,考虑到对电磁流量计衬里和电极的磨损,选用流速≤5m/s,另一方面水泥浆液又具有易粘附、沉淀、结垢的特性,故电磁流量计测量管内的流速应不低于0.5m/s,以起到对电极和内衬的自清扫作用。一般当测量管内实际流速<0.1m/s时,感应电动势已变得十分微弱(零点几μV~几μV),此时噪声.的影响逐步变为主导,甚至淹没信号电动势4],由流速与相对误差的关系图(图4)可知,为了保证仪表的检测精度,流速应大于0.5m/s.故推荐使用流速范围为0.5~5m/s. 灌浆施工时吸浆量大小一般在0~100L/min,进、返浆,上电磁流量计相应的流量范围为30~100L/min,从流量、流速与口径三者关系表(表1)可知:电磁流量计口径选择DN25比较合适。DN25的测量范围是14.72~147.18L/min,同时DN25和现场灌浆管道口径一致,配套安装时,不需要变径。同时电磁流量计的时间常数也应该设置小一些,一般在1~3s,以提高测量的灵敏度。 封孔:待灌浆结束后,按照施工技术要求压浆封孔,无流量测量点,故不展开讨论。德国VSEAP1流量计原厂根据以上的介绍,我们在设计选型或更新改造时, 要结合流量计特性和介质的情况进行合理选择,充分发挥各种流量计的优点,扬长避短,同时应考虑投资成本.下面根据天然气净化厂各种介质的特点和目前使用流量计的实际情况提出流量计选型的基本原则.1.天然气的测量 天然气是净化厂的生产对象,进厂的原料和出厂的产品都是天然气,由于进厂的原料天然气(湿天然气)含有少量的固,液体杂质,H2S和CO2含量较高,有一定腐蚀性,流量计可选择带阀式孔板节流装置的孔板流量计,以便定期清洗更换孔板, 防止孔板的锈蚀和入口边缘磨损,提高计量准确度;出厂天然气比较干净可选择带阀式孔板节流装置的流量计或气体超声流量计,气体超声流量计适用于大管径流量测量,准确度可优于1.0%,但一次性投资较高;对于工厂用天然气,由于管径较小,除孔板流量计外,也可选择旋进旋涡流量计,涡轮流量计等,选用涡轮流量计时应在上游安装过滤器.2.酸性气的流量测量 净化厂的酸性气是含有很高浓度的H2S和CO2的气体,这是净化厂从原料天然气中处理出来的主要物质,该气体的特点是压力低,带有一定水汽,腐蚀性强;因此测量酸性气流量的流量计可选用孔板流量计,均速管流量计,楔形流量计或弯管流量计,目前使用的有孔板流量计和均速管流量计,从流量计结构上讲,选择楔形流量计比较合适,它不存在积液问题,维护量也很小.3.蒸汽流量测量 过去普遍使用孔板流量计,由于孔板流量计在高温下孔板易变形,因此,可选择涡街流量计,均速管流量计,楔形流量计或质量流量计,但应考虑温度压力修正.4.化学溶液流量测量 天然气净化厂用于工业生产的化学溶液品种不是很多,对于脱硫和脱水的化学溶液由于是反复循环使用,溶液中含有部分悬浮物,过去大多数使用孔板流量计是不太合适的, 应选择楔形流量计或弯管流量计;也可选用外夹式超声流量计;盐酸和氢氧化钠流量测量应选择带防腐内衬的电磁流量计.5V液体硫磺流量测量 液体硫磺是天然气净化厂的副产品,过去由于流量计产品的局限性,很多净化厂均没有安装流量计,部分厂安装了涡轮流量计,但使用效果不佳;目前可供选择的有质量流量计和楔形流量计.由于液体硫磺一般管压力都不太高, 因此选用质量流量计较为合适.6.工业循环水流量测量 由于水的测量相对容易一些,因此可供选择的流量计比较多,如孔板流量计,涡街流量计,均速管流量计,电磁流量计,超声流量计都可用于工业水测量;若测量管口径较大,选择超声流量计比较理想,对于较小口径的选用电磁流量计效果比较好.7.污水流量测量 污水流量测量选择电磁流量计,楔形流量计比较合适,水质较好也可选用孔板流量计.流量积算仪主要用于各种液体、蒸汽、天然气及其他气体的流量测量。由于流量积算仪功能多,使用非常复杂,使用时容易出现问题。一、设置中易出现的问题1.介质及介质状态的设置(1)错误地设置介质,例如,当介质为蒸汽时,设置为空气。(2)错误地设置介质状态,例如,当蒸汽状态为过热蒸汽时,设置为饱和蒸汽。2.流量信号输入的设置 一般为频率信号输入,也有模拟信号输入。容易出现的问题是输入错误的信号,如本应输入频率信号却输入了模拟信号,或本应输入模拟信号却输入了频率信号。3.温度、压力信号输入的设置 温度信号输入一般是模拟信号,可以设置为(4~20)mA电流信号、(0~l0)mA电流信号、(1~5)V电压信号、Pt100铂电阻信号。容易出现的问题是设置了错误的信号,如本应设置模拟信号却设置了频率信号,或本应设置铂电阻信号却设置了(4--20)mA电流信号。 压力信号输入一般是模拟信号,可以设置为(4--20)mA电流信号、(0~10)mA电流信号、(1~5)V电压信号。容易出现的问题是设置了错误的信号,如本应设置(1~5)V信号却设置了(4~20)mA电流信号。4.配套流量计的设置 通常可以设置为孔板流量计、涡街流量计、涡轮流量计。由于流量计原理不同,因此,在流量积算仪的流量计算中.不同类型的流量计有不同的算法,如果流量计选型错误,则流量计算必然出错。5.温压补偿的设置 应用在蒸汽介质流量计量时,需进行温压补偿。例如一台流量积算仪,当用于过热蒸汽时.需要同时进行温度补偿和压力补偿;当用于饱和蒸汽时,由于一一对应关系,只能对其中一个输入信号进行补偿,根据现场情况,只选择温度补偿或只选择压力补偿。如果应用在天然气介质流量计量中.需同时进行温度补偿和压力补偿。6.输入信号范围的设置 温度输入信号、压力输入信号、流量输入信号分别设置自己的测量范围,流量积算仪设置的流量测量范围、温度测量范围、压力测量范围应分别大于现场的流量范围、温度范围、压力范围。例如,设置最大流量1O00m3/h,但实际测量流量为2000m3/h,超过了积算仪中设置的流量测量范围,则流量计算出错。二、接线时易出现的问题 对于不同的输入信号.需要选择不同的接线端子。但在实际应用中,由于操作比较复杂,接线时容易出现错误。例如流量积算仪使用在饱和蒸汽下,流量积算仪内部设置为温度补偿,而在实际接线时将压力输入信号作为补偿信号接到流量积算仪,造成接线错误,从而造成流量计算错误。 综上所述.要正确使用流量积算仪,需要专业人员严格按照现场操作条件进行设置和接线,以保证流量积算仪的正确使用;同时,流量计量人员应按照用户要求.模拟流量积算仪现场使用条件进行流量积算仪的检测。作为流量计,首先需要确定它的通径和流量测量范围即确定传感器测量管内流体的流速范围。 流量计量程范围的选择对提高流量计工作的可靠性及测量精度有很大的关系根据不低于预计的最大流量值的原则选择满量程.正常常用流量最好超过满量程的50%这样就可以获得较高的测量精度。 传感器通常选用与工艺管道相同的通径或者略小些.在量程选定的情况下通径的选择是根据不同的测量对象以及传感器测量管内流体流速的大小来决定的.电磁流量计所测流体的流速从其测量原理本身考虑可以选得很高有些场所曾选到10m/s但在一般使用条件下,考虑到管道中流体的流速与压力损失的关系流速选择在2~4m/s为最适宜.在特殊情况下要按照不同的使用条件来确定。例如对于带有有颗粒造成管壁磨损的流体常用流速选为≤3m/s对于易粘附管壁的流体常用流速则选为≥2m/s.在测量纸浆时流体的流速提高到4m/ s 以上,可以达到自动清除电极上附着纤维的目的。 确定了流速以后流量计传感器的通径可以根据下述关系式确定。电磁流量最大流量选择参考图1、精确度 一般说来,选用涡轮流量计主要是看中其高精确度。目前涡轮流量计的精确度大致为液体:国际市场为±0.15%R,±0.2%R,±0.5%R和±1%R,国内定型产品为±0.5%R和±1%R;气体:国际市场为±0.5%R和±1%R,国内为±1%R和±1.5%R,以上精确度指范围度为6:1或10:1。精确度除与本身产品质量有关外,还与使用条件密切相关。 若缩小范围度可提高精确度;特别是作为标准表法流量标准装置的标准流量计,若定点使用,精确度可大为提高。 流量计精确度愈高,对现场使用条件的变化就越敏感,要想保持其高精度,需要对仪表系数特别的处理。一种处理方法就是所谓仪表系数浮动处理法。即由现场以下条件实时进行处理:a)粘度受温度的影响;b)密度受压力、温度的影响;c)传感器信号冗余(一台传感器输出二个信号,监视其比值;d)系数的长期稳定性(采取控制图确定)等。 对于贸易储运交接计量,常配备在线校验装置,以便定期进行校验。 生产厂使用说明书列举的仪表精确度为基本误差,现场应估算附加误差,现场误差应为两者的合成。2、流量范围的选择 涡轮流量计的流量范围的选择对其精确度及使用期限有较大的影响。一般在工作时最大流量相应的转速不宜过高。使用状况分连续工作和间歇工作两种,连续工作是指每天工作时间超过8小时,间歇工作是每天工作时间少于8小时。对于连续工作最大流量应选在仪表上限流量的较低处,而间歇工作可选在较高处。一般连续工作是将实际最大流量乘以1.4作为流量范围的上限流量,而间歇工作则乘以1.3。 如果仪表口径与工艺管道通径不一致时,则应以异径管和等径直管改装管道。 对于流速偏低的工艺管道,最小流量成为选择仪表口径首先要考虑的问题,通常以实际最小流量乘以0.8作为流量范围的下限流量,使其留有一定的裕量。若配有分段线性化功能的显示仪,在传感器流量下限值不能满足实际最小流量时,应要求生产厂在实际最小流量及其附近进行流量校验,将测得的仪表系数输入显示仪,这样就能既降低仪表的流量下限值,还能保持测量的精确度。3、精确度等级 对于仪表精确度等级的要求要慎重,应该从经济角度来考虑,例如大口径输油(输气)管线的贸易结算仪表,经济上关系重大,在仪表上多投入是合算的。至于输送量不大或作为过程控制用只需中等精度水平即可,切忌盲目追求高精度。本安型防爆传感器适配安全栅型号及制造厂,核查防爆等级及批准文号等。若要显示质量流量(或标准状态下体积流量)要选配压力、温度传感器或密度仪表。涡轮流量计显示仪现已由以微处理器为基础可与上位计算机进行通信的流量计计算机所包括,该仪表在仪表功能及使用范围等都远超过老式涡轮流量显示仪。目前作为贸易计量的各类型流量计都趋向于配有直读式显示装置。不但有总量计量的显示,还可附加补偿器(一台功能齐全的流量计算机)输出远传信号。4、对流体的要求 对流体的要求为洁净(或基本洁净)、单相或低粘度的,常用流体举例如下:一般流体,包括水、空气、氧气、高压氢气、牛奶、咖啡等;石油化工类:汽油、轻油、喷气燃料、轻柴油、石脑油、乙烯、聚乙烯、苯乙烯、液化气、二氧化碳及天然气;化学溶液类:氨水、甲醇、盐水等;有机液体:酒精、苯、甲苯、二甲苯、丁二烯、四氯化碳、甲基胺、丙烯腈等;无机液:甲醛、酢酸、苛性钠、二硫化碳等。对于腐蚀性介质,使用材质选择要注意,含杂质多及磨蚀性介质不推荐使用。5、对液体粘度的要求 液体涡轮流量计为粘度敏感的流量计,当液体粘度增大时,仪表系数的线性区变窄,下限流量增大,当粘度增加到一定数值时,甚至无线性区域。螺旋叶片的情况比直叶片要好的多。 对于液体,通常用水校验传感器,当精度为0.5级时,可在5×10-6mm2/s以下的液体而不必考虑粘度的影响。当流体粘度高于5×10-6mm2/s时,可用相当粘度的液体校验而不必作粘度修正。此外也可采取一些措施来补偿粘度的影响。如缩小使用范围度,提高流量下线值或仪表系数乘以雷诺数修正系数等。 粘度对仪表系数的影响与传感器结构类型及参数口径大小等有关。有几种粘度对仪表系数影响的表示方法:仪表系数与雷诺数的关系,在几种粘度下,仪表系数与输出频率的关系和仪表系数与输出频率除以运动年度的比值的关系等等。这些资料有的生产厂准备有,但并非所有的生产厂都有这些资料。6、对气体密度的要求 气体涡轮流量计主要考虑流体密度对仪表系数的影响,密度的影响主要在低流量区域,如图14所示。密度的增大(即压力增大)使特性曲线直线部分向下限流量区域拓展,传感器的范围度扩大,线性度改善。若气体涡轮流量计在常压的空气中校验使用时被测介质工作压力不一样,其下限流量由下式计算qvmin,qvamin-分别为压力p和压力pa(101.325kPa)下被测介质和空气的体积流量下限值,m3/h;p,pa-分别为工作压力(绝压)和大气压(101.325kPa),kPa;d-被测介质的相对密度,无量纲。7、体积流量换算到质量流量 涡轮流量计测量的是实际体积流量,无论物料平衡或能源计量,介须测量介质流量(即标准状态下的体积流量),这是应由下式进行换算 式中 qv,qvn-分别为工作状态和标准状态下的体积流量,m3/h;p,T,Z-分别为工作状态下绝对压力(Pa),热力学温度(K)和气体压缩系数;pn,Tn,Zn-分别为标准状态下绝对压力(Pa),热力学温度(K)和气体压缩系数;8、不宜选用涡轮流量计的场所含杂质多的流体,如循环冷却水、河水、排污水、燃油等;流量急剧变化的场所,如锅炉供水系统、有空气锤的供气系统等;测量液体时,管道压力不高而流量又较大,仪表下游侧压力可能接近饱和蒸汽压,有产生气穴的危险,如液氨从高位槽靠位能自由流出,在排放口处就不宜安装;电焊机、电动机、有触点的继电器等的附近,存在严重电磁干扰的场所;上下游直管段长度严重不足,如轮船的机舱内;锅炉自动供水系统如频繁地起泵和停泵,对叶轮造成冲击,使传感器很快损坏;有腐蚀性或磨蚀性介质选型时应慎重,宜与制造厂联系咨询。9、经济性 选用涡轮流量计用于高精确度场合,其经济因素应多方面考虑。仪表的购置费只是费用的一部分,还应考虑以下几方面的开支:安装用辅助设备费(如消气器、过滤器等)或旁路支管包括阀门等;校验费,为了保持高精度必须经常校验,甚至在现场安装一套在线校验装置,其费用相当可观;维护费,涡轮流量计的易损件更换用,他是保持高性能必需的。