关注微信 微信二维码
咨询热线: 0531-85960083
济南融恩机电设备有限公司
德国VSEVHM02-3流量计销售厂家
编辑:admin 浏览量:59 发布日期: 2022-05-06 21:59
德国VSEVHM02-3流量计销售厂家同时我们还经营:实际应用中,磁翻板液位计如果出现消磁现象,就不能正常使用。那么,消磁原因是什么?如果磁翻板液位计出现消磁现象应如何处理呢?一、磁翻板液位计消磁的原因:  侧装式磁翻板液位计的磁浮子在使用过程中磁浮子会有消磁现象,从而导致磁翻板液位计失效。一般来讲,造成磁翻板液位计消磁的原因,主要有以下几点1、硬磁材料的剩磁小于耦合临界值。随着时间变化,受自身因素的影响随着时间的推移,硬磁材料的剩磁会出现小于耦合临界值的现象。 2、高性能硬磁材料有氢脆现象。 3、使用温度高于硬磁材料的居里温度。二、磁翻板液位计消磁的处理:   针对导致磁翻板液位计消磁的原因,通常需要做到以下几点,以应对磁翻板液位计的消磁现象。1、从设计方面看,要选用恰当的硬磁材料。比如在选用磁性材料时,应选用居里温度高于使用温度20%以上、能够保证五年后剩磁超过临界值的磁性材料。2、从生产方面看,加工磁浮子时应注意:a.在磁浮子内填充惰性气体(如氩气)。 b.在产品生产加工阶段,焊接(氩弧焊)时应注意采取降温措施,以避免磁浮子的磁性材料处的温度超过磁性材料的居里温度。3、从使用方面看,用户要做到以下几点: a.在订货时,选用恰当的型号,达到使用温度不超过磁翻板液位计的标称温度; b.在使用中,应对侧装式磁翻板液位计的使用情况(能否正常工作)进行随时观察,并注意记录介质的实际温度。1.空间电磁波干扰及改进  电磁流量计用于测量实践的过程中,转换器与传感器间如果存在较长的电缆,同时周边有较强电磁干扰的情况存在,此时由于电缆的存在,干扰信号会被引入进去,最终会有共模干扰现象形成,导致流量计发生非线性、显著失真或大幅度晃动等诸多情况,测量的准确性也会因此大打折扣.面对此类误差引发的原因来看,可根据下述措施进行解决:(1)在电磁流量计安装中,需要深入分析周边环境,保证电磁流量计原理强磁场.(2)尽量将电缆长度控制在适宜范围内,并落实相关屏蔽措施,如将电缆传入接地钢管中,避免电源线与电缆传入同一根管.(3)选择与要求相符合的屏蔽电缆,同样能将电磁波构成的干扰有效降低.2.连接电缆问题及改进  电磁流量计是通过特定电缆、转换器和传感器组成的系统,因此电缆长度、屏蔽层数、导体横截面积、绝缘情况及分布电容等都会对其测量结果构成影响,甚至还会对电磁流量计的正常运行产生干扰.所以,在安装电磁流量计时不但需要参照导体横截面积、屏蔽层数、待测液体电导率及分布电容等确定电缆长度,同时也要将电缆中间接头的情况规避,并妥善处理末端,保障能够实现良好连接.此外,也要保障所用电缆符合标准要求.3.测量管内存在着层及改进  以电磁流量计应用对象为根据,其多以测量非清洁流体为主,倘若实际测量中有一定量沉淀物等物质存在于非清洁流体内部,电磁流量计的正常使用及测量也必然会遭受影响,如污染电磁流量计管道、电极表面,最终引发测量误差.面对此类误差引发原因,相关人员在日常工作中应当做好电磁流量计定期清洗工作,同时适当将流速提升.此外,在衬里材料的选择中,可选择聚四氯乙烯.4.电极选择、液体流速问题及改进  电磁流量计实际应用中,其电极和内部材料会直接接触待测液体,所以在选择电极和衬里材料时,都应当以待测液体为根据合理进行.结合待测液体性质完成衬里材料特性的确定,并在实际测量中围绕测量温度展开严格控制,避免由于衬里材料选择不合理或温度控制力度不足而导致衬里材料受磨损或变形等情况,进而导致附着速度加快、增大测量误差发生率.针对此类情况,在应用电磁流量计时,在突出衬里材料选择针对性的同时,也需要合理选择电极,并妥善控制液体流速,保障处于合理范围.5.测量液体呈现不对称状态及改进  应用电磁流量计测量相关液体的流量时,待测液体如果有不对称状态出现,必然会引起测量误差的情况.液体非对称状态通常在单一的漩涡流或沿管线轴线的直线流等两种流动组合方面得到表现.该情况下,管道截面的积分为液体体积流量.上游直管段如果存在不足,一般情况下可结合流量调节器调节流量,控制上下游一定范围内流量计内径与管道内径之间具备相同的数值,确保上游直管段充足.6.电极与励磁线圈对称性问题及改进  在加工制造电磁流量计磁力线圈及电极时,有着严格对称的要求.倘若有不对称的情况出现,必然会引起不对称偏差,进而对测量结果构成影响,最终也就会有测量误差的情况出现.同时,在安装电磁流量计时,也严格要求了安装地点的振动,如一体型电磁流量计的安装,需要在振动小的场所内,如果振动超出了标准就会有误差出现在测量中,甚至还会对仪表的正常工作构成影响.所以,相关人员在实际安装前,需要对待安装位置振动展开严密测量,保障与安装标准相符合.vse流量计德国VSEVHM02-3流量计销售厂家  热式气体质量流量计按结构可以分为热分布型和浸入型。热分布型热式流量计将传感元件放置于管道壁,传感元件经过加热温度高于流休温度,流体流经传感元件表面导致上下游温度发生变化,利用上下游温度差测量流体流量,一般用于微小流速气体流量的测量。   热分布型热式流最计的T.作原理如图1所示,传感元件由上游热电阻、加热器利下游热电阻组成,加热器位于管道中心,使得传感元件温度高于坏境温度,上游热电阻和下游热电阻对称分布于加热器的两侧。图1中曲线1所示为管道中没有流休流过时传感元件的温度分布线.相对于加热器的上下游热电阻温度是对称的。当有流体经过热式传感元件时,温度分布为曲线2,显然流体将上游部分的热量带给下游,导致上游温度比下游温度低,上下游热电阻的温度差△T反映了流体的流量,即△T=f(m)。当流体流速过大时,上下游热屯阴的温度差△7趋向于0,因此热分布型热式气体质量流量计用于测量低流速气休微小流量。气体质量流量qm可表示为 式中:Cp-一流体介质的定压比热容;A一热传导系数;K一一仪表系数。   浸入型热式流最计的工作原理如图2所示,一般将两个热电阻置于中大管道中心,可测量中高流速流体。热电阻通较小电流或不通电流,温度为T;另一热电阻经较大电流加热,其温度T高于气体温度。管道中有气流通过时,两者之间的温度差为△T=Tv-T0气体质量流量qm与加热电路功率P、温度差△T的关系式为   式中:E一系数与流体介质物性参数有关;D一与流体流动有关的常数。   如果保持加热电路功率P恒定,这种测量方法为恒功率法;如果保持温度差△T恒定,这种测量方法为恒温差法,两种方法有各自的优缺点,使用时据具体环境和需要而定。目前较普遍的是采用恒温差法,由于需要不同的应用领域,恒温差法已不适用于某些场.合的测量,因此恒功率法应用领域越来越广泛。恒温差法的基本原理是流体流过加热的热电阻表面使得热电阻表面的温度降低,热电阻的阻值变小。反馈电路自动进行处理,通过热电阻的加热电流变大从而使得热电阻温度升高,即可使得热电阻与流体温度差恒定。通过测量传感电路的输出电流或输出电压便可获得流量值。恒功率法的基本原理是加热功率为恒定值,管道内没有流体流过时温度差△7最大,当流体流过热电阻表面时热电阻与流体温度差变小,通过测量△T便可得到流体流量。1.一次测量元件引起的误差  孔板流量计中的节流元件是尖锐的直角边缘,流体在节流元件的入口收缩,根据伯努力方程,流速增加,压力减小,孔板的测量原理就是根据孔板入口和出口的压差进行测量的。孔板平钝后流出系数增大,产生测量误差。流出系数对蒸汽流量测量的影响是普遍存在的。  测量管也是节流装置的组成部分,其结构尺寸对流体流动状态有重要的影响,测量管除满足前10D后5D的要求外,还对内表面的光滑度有要求。粗糙管的流速分布与光滑管是有区别的,流出系数也不相同,管道结垢、腐蚀,流出系数发生变化,产生测量误差。  对于孔板入口边缘磨损的问题,我们可以选用标准喷嘴,由于喷嘴入口是一个光滑的曲面,它的抗磨损,抗积污,抗变形程度远好于孔板,流出系数稳定性也比孔板好,压力损失也比孔板小得多,而且它的检定周期为4年,大大减少了维护费用。  对于测量管的问题,在管道安装时就尽量选用光滑度高,质量好的管道,必要时请专业厂家定制测量管道、连接法兰,冷凝器等,补偿用的温度和压力测量点也可以统一开工获取。虽说一次性投资高些,但由于投入使用后没有特别原因,一般不进行更换,还是使用周期越长越好,这样综.合经济效益还是高些。2.测量信号的传递失真  测量信号传递是孔板前后的差压信号经导压管传递到差压变送器,由于结构的不同,孔板流量计不同于涡街流量计那样直接装在管道上,它需要进行信号传递。对于蒸汽流量测量而言,传递部分可由阀门,导压管,冷凝器等部件组成。对于信号传递部件来讲,应保证传递信号不失真。实际使用中的大部分故障,往往是信号传递失真引起的。差压信号产生的传递失真比作为补偿用的温度和压力信号失真影响更大,必须引起注意。冷凝器在信号传递中处于关键位置,冷凝器中的液面保持一定高度,多余的冷凝液要回流到蒸汽管道,既要保证冷凝器中蒸汽很好地冷凝,又要使冷凝液回流畅通无阻。  气相导压管的一次根部阀门应保证蒸汽气相进入冷凝器,冷凝器里面多余的冷凝液回流到蒸汽管道,否则两只冷凝器液面不能保持相平,会对差压信号产生附加误差。一次根部阀门尽量选用闸阀,保证压力信号传递通畅无阻,减少测量误差。  测量用的导压管要加保温伴热,否则冬季不能正常工作。不管采用电伴热还是蒸汽伴热,一定要保证两只导压管受热均等,不然会因导压管中的液体的密度不同而产生附加差压误差。  作为压力补偿用的变送器一般和压力取压口不在同一高度上,如果变送器比取压口低,所测出的压力为管道中蒸汽的压力加上导压管中冷凝液产生的压力,可在变送器中进行正迁移将这部分压力迁移掉。使变送器测出的压力为管道中实际蒸汽压力。3.蒸汽密度问题产生的误差  测量蒸汽质量流量时要根据蒸汽的密度进行计算,因蒸汽的密度计算不准确产生测量误差。蒸汽流量测量仪表中涡街流量计是用工艺车间提供的蒸汽密度值为参考值,不是实际的密度值,得出的蒸汽流量会和实际流量有误差。选用涡街流量计时,最好选用能进行温度和压力补偿的型号,并且安装测温和测压元件取得温度和压力数值。孔板式流量计测出的流量由DCS系统显示,没有进行温度压力补偿。为了提高测量的准确度,必须进行温度压力补偿。对于孔板流量计,取得差压信号的同时,还需测得温度和压力信号,通过DCS中的专用软件进行温度和压力补偿。4.相关系数的影响  流出系数C和可膨胀系数ε在一定范围内可看作常数,但是,当蒸汽的状况偏离设计状态时,其流出系数C和可膨胀系数ε就会发生变化,就不能视为常数。测量小流量时,随着雷诺数变小,流出系数C将产生较大的变化。测量高压时,则必须考虑气体的可膨胀系数ε的影响,如果我们只补偿密度变化的影响,即使实现了对密度的完全补偿,其它各参数变化累加后的最大误差仍达6%左右,其中,可膨胀系数ε引入的误差最大。所以,要想提高仪表的测量精度,除补偿密度外还应考虑整个补偿方程中其它参数变化的补偿问题。DCS中的蒸汽测量模块中,不仅有密度补偿方式,还有流出系数C和可膨胀系数ε的修正办法,只要我们选用合适的流量测量模块,就能提高蒸汽流量的测量准确度。  一般认为,蒸汽干度X较高(X≥95%)时流体可视为单相流体。温度压力补偿可按通常方法进行。但出现-定误差。干度越低密度越大。在蒸汽干度较低(X<95%)时,管道中的流体处于二相流状态。情况严重时,流体分层流动,产生误差更大。目前还没有在线的干度测量仪表测量蒸汽的干度,最好的办法就是加强蒸汽传输管道的保温,提高蒸汽的过热度,使蒸汽的干度较高,孔板流量计测量也比较准确。金属管浮子流量计的安装应严格按照说明书中的有关技术要求去做,并注意以下几个问题: 1.金属管浮子流量计在安装时应留有足够的空间,进口应有5倍管道直径以上的直管段,出口段为250mm,安装位置应选择在没有震动、便于观察和维修的场所。 2.为保证在任何时候测量管内都充满料液,金属管浮子流量计应安装在上料管的垂直段,液体流向为由下而上,不得倒流。为了便于检查、修理和更换,安装时采用联接旁通,并且在金属管浮子流量计下侧留有清洗口。 3.由于在管道吹扫时有些铁锈、焊渍清洗不净,有时介质中含有铁磁颗粒,应在入口处安装磁过滤器以避免这些杂质会被吸附在浮子上使浮子卡住。 4.若金属管浮子流量计管径小于工艺管道管径,应在LZ两端安装渐缩管,然后和工艺管道相连。 5.为了提高整个测量系统的抗干扰技术性能,信号和电源电缆要分开敷设,分别套在钢管内,尤其要远离动力电缆,信号电缆两接头的外露部分要保持非常短。 6.为保证测量精度,消除外界干扰,金属管浮子流量计的接地线采用不小于4mm2的铜线与大地相连,埋设深度在1m左右。热式气体质量流量计是利用传热原理,即流动中的流体与热源(流体中加热的物质或测量管外加热体)之间热量交换关系来测量流量的仪表,目前主要用于测量气体。热式流量仪表用得最多有两类,一是利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计,曾称量热式TMF;另外--类是利用热消散(冷却)效应的金氏定律TMF又由于结构上检测元件伸入测量管内,也称插入型或侵入型。插入型的工作原理及流量计算如下:   如图所示,插入式热式气体质量流量计由两个电阻温度计组成传感器,一个测温探头,感受流体温度T2另一个电阻温度计由电路加热到温度T1用来测量流体带走的热量变化,亦称测速探头。T1高于T2。并保持△T恒定,即△T=T1-T2。当流体流经传感器时,由于测速探头的自身温度T1高于测温探头感受的温度即流体温度T2,流体便带走了测速探头上的一部分热量(高温向低温传递),使T1下降。电路为保持△T恒定,便增加对测速探头的加热功率,使△T=T1-T2恒定。流体带走测速探头.上多少热量,电路便增加相应数量的电功率,两者之间存在着一个函数关系"。设对测速探头的加热功率为P1,流体的质量流量为Q,则根据流体流过测速探头时所带走的热量与对测速探头的加热功率相对应的原理,得到下列关系式: 式(1)中,PocQ   因此,可以通过测量加热功率P,来测量带走这部分热量的流体的质量流量。由于带走着部分热量的是流体的分子,所以,测速探头直接测量的是流体的质量流速pv,此时,只要乘上管道的横截面积,就可以得到流体的质量流量了。由于气体流过探头时带走热量和气体的质量流量成比例关系,也和探头间温差有关,流量越大,两探头之间温差越小,气体质量流量与温差之间的联系通过质量流速ρv建立"。 式中:Qm-质量流量,kg/s; Kv-测量头仪表系数; a-速度分布系数; B一阻塞系数; x-干扰系数; A-仪表表体(测量管道)的内橫截面积,m² ρv一质量流速,kg/(m²·S)。   基于_上述原理,对于大管径的流量测量来说,虽无相应的大管径标定装置来对流量计进行标定,但只要在标准口径的标定装置.上测定相应的质量流速,也就可方便地测量出大管径中流体的质量流量了。   由热式气体质量流量计中于两个传感器都是用性能稳定的金属铂材料通过特殊工艺密封在316L不锈钢管或抗酸、碱腐蚀的K2760哈氏合金或铂套管中制成,因此极为坚固,并不会污染被测流体或受被测流体污染,且其抗腐蚀性能相当好。容积式流量计主要用来测量不含固体杂质的高粘度液体,例如油类、冷凝液、树脂和液态食品等粘稠流体的流璧,而且测量准确,精度可达士0.2%,而其他流量计很难测量高粘度介质的流量。椭圆齿轮流量计是最常用的一种容积式流量计.如图3-13所示。1.工作原理  椭圆齿轮流量计的测量部分是由两个互相啮合的椭圆形齿轮A和B以及轴、壳体等组成。椭圆齿轮与壳体之间形成测量室。如图3-14所示。  当被测流体流经椭圆齿轮流量计时,由于要克服仪表阻力必然引起压力损失,从而在其人口和出口之间产生压力差 . 在此压力差的作用下,产生作用力矩使椭圆齿轮连续转动 .  由于 P1>P2,P1、P2共同作用产生的合力矩使A轮顺时针转动. 而B轮上的合力矩为零,此时A轮带动 B 轮顺时针转动.A为主动轮.B为从动轮. 在图3-14(b) 所示中间位置时,A轮和B轮都为主动轮.在图3-14(c)所示位置时,A轮上的合力矩为零,而B轮上的合力矩最大.B 轮逆时针转动,此时B为主动轮 .A 为从动轮。如此循环往复,将被测介质以椭圆齿轮与壳体之间的月牙形容积为单位,依次由进口排至出口。椭圆齿轮流量计旋转一周排出的被测介质体积量是月牙形容积的 4 倍。椭圆齿轮流量计的体积流量Q为:Q=4nv2(3-7)式中:n为椭圆齿轮的旋转速度;V2为椭圆齿轮与壳体间形成的月牙形测量室的容积。2.使用特点  椭圆齿轮流量计适用于洁净的高粘液体的流量测量,其测量精度高,压力损失小,安装使用方便,可以不需要直管段。但被测介质中不能含有固体颗粒,更不能夹杂机械物,否则会引起齿轮磨损甚至损坏。所以为了保护流量计,必须加装过滤器。  椭圆齿轮流盘计在启用或停运时,应缓慢开、关阀门,否则易损坏齿轮,另外,流量计的温度变化不能太剧烈,否则会使齿轮卡死。德国VSEVHM02-3流量计销售厂家涡街流量计安装方式的选择 涡街流量计既可安装在水平管道上,也可安装在垂直管道上。  因为涡街流量计是一种速度式流量计,要实现准确测量,必须注意保证满管测量,故在水平管道上安装涡街流量计,一般应选择安装在管道的最低处,安装在垂直管道时,流体的流向应自下而上。  涡街流量计直管段要求 涡街流量计的安装对其前后直管段的要求是非常苛刻的,流量计上游要保证有10D~35D 的直管段(D为管道直径),流量计下游直管段应不小于5D,上游直管段长短视上游有无直角弯、扩大管、缩径管而定。  特别注意,在直管段满足要求的情况下,流量计应尽量选择安装在前后直管段尽量大的管道位置处,这样能够保证流量计上下游节流件所造成的紊流不致影响到流量计测量精度。涡街流量计安装位置的选择1)管道的强烈震动会对涡街流量计的测量产生一定的影响,故在选择涡街流量计安装位置时,应尽量避免安装在有强烈震动的管道上,以免影响测量精度.当管道有震动时,必须采取减震措施。2)工频干扰信号存在也会对涡街流量计的测量产生非常大的影响,工频信号会叠加到测量信号中去。故涡街流量计尽量避免安装在大功率电动机等存在的环境里,在此环境下,必须采取做好仪表接地,选用屏蔽电缆,信号的传输方式采用直流信号等措施消除工频干扰。3)涡街流量计漩涡发生体的迎流面必须正对着流体流动方向,安装时应特别注意,否则会产生非常大的偏差。4)在涡街流量计带有流量调节的系统中,涡街流量计即使满足直管段要求,也必须安装在调节阀前。否则调节阀产生的射流会对涡街流量计的测量产生影响,会出现阀门开小,流量反而增大的现象。超声波液位计出现故障指示灯常亮的情况主要有以下两种,解决方案如下供参考:1.在超声波持续零液位时,顶部灯亮,输出电流为22mA。而且隔一段时间后恢复液位时,故障不能自动解除,需关电重启后正常,给客户带来不必要的麻烦甚至损失。  出现这种故障是安装附件的选择问题。由于超声波液位计是全球0度发射,优点上面也介绍了。它的另外一个与众不同的特点是,超声波的发射除了平面头外,在螺纹这里也是有发射的。如果持续的零位,再加上安装件选用金属支架。超声波液位计就会识别到支架部分的信号强度大于平面头接收的信号强度。而金属支架部分与发射波之间处于盲区距离。所以超声波处于保护状态,故障灯常亮,输出22mA。解决的办法就是选用非金属支架。因为选用非金属支架后,螺纹处的发射波能穿透出去,而零点液位的回波信号绝对会大于螺纹处的回波信号。2.经调试与重新编程后,顶部故障灯常亮,输出电流为22mA。出现这种故障情况,经实际查证,还是在编程与调试过程中,未能按照说明书要求。造成的程序紊乱而自保状态。客户在调试编程超声波液位计时,未能等到指示灯正常闪动,或则编程方法步骤根本不对,处于不稳定的编程调试。如果多次反复未依要求编程调试,超声波液位计将拒绝工作而自保。出现这种故障的解决方法是先将超声波液位计按要求复位,再进行重新编程。如果在未复位的情况下多次再编程,会出现以上故障。1、孔板流量计计量天然气的优势分析1)孔板流量计的结构组成比较简单,性能稳定可靠,节流装置运行稳定安全,整体使用寿命较长,且成本较为低廉,综合效益优势突出,校验检测质量合格。2)孔板流量计能够使区域性液体流动速度增加,降低静压力标准,产生压差,通过对压差进行测量的方式来评估待测定区域内流体流量的大小,故而测量精度较高,误差小。3)孔板流量计生产制造过程当中的相关检测件以及差压显示仪表能够由不同的生产厂家进行生产制造与供货,具有专业化、规模化生产的价值与潜力。4)由于孔板流量计在作用于天然气计量的过程当中,标准节流件为全世界通用,且有大量的国家、国际、行业标准作为支持,实际应用中不需要进行实流校准,操作步骤简单,质量控制可靠,且数据精度有所保障。2、孔板流量计计量天然气的误差消除1)要求从设计安装的角度入手,重视对孔板流量计作业质量的严格控制。当前我国存在大量标准的孔板流量计安装操作规范,当中对孔板流量计在安装过程当中的各项技术指标进行了详细、精确的规定。同时,安装期间还要求根据孔板前阻力件的结构形式,对应配置长度符合要求的直管段,工程实践中同时要求,直管段长度应当挖制在≥30d单位以上。若受客观环境条件影响,无法满足这一一要求,则需要在直管段上通过增设整流器装置的方式缩短安装长度。安装期间,还要求对孔板流量计入口端相对于管道线的方位进行控制,垂直角度90.0°进行控制,偏差应当严格控制在±1.0°范围之内。2)要求从应用维护的角度入手,重视对脉动流的消除与控制。为了最大限度的消除孔板流量计作业期间的脉动流,需要将天然气当中的水分最大限度的从管线中脱出出来,具体的技 术措施为:管道低处安装分液器,消除管线内部所累积的积液。与此同时,还需要在确保孔板流量计自身计量性能的基础之上,合理控制测量管道内部内径参数,同时合理提高管道差压取值标准。除此以外,还可以在测量点以前的入口端增设调压阀部件,使孔板流量计计量期间的输出压力能够取值比较稳定。相同类型的方法还有:将缓冲罐加装在测量管道以前位置,使气体能量能够得到及时的储存与释放,达到对抗差压波动的目的,避免天然气计量作业期间,脉动现象对计量精度所产生的不良影响。

QQ咨询

在线咨询 真诚为您提供专业解答服务

咨询热线

13905314198
7*24小时服务热线

关注微信

二维码 扫一扫添加微信
返回顶部