德国VSEAP0.4流量计样册
编辑:admin
浏览量:59
发布日期: 2022-05-09 21:50
德国VSEAP0.4流量计样册同时我们还经营:电磁流量计未输出流量信号故障问题,通常是因电缆或电源故障、管道内部没有充满流体介质、液体相反流动方向等因素所致。对于以上可能会引发故障问题因素,需对仪表的电源供电与电缆连接情况做好细致检查,并对管道内部测量流体的介质流动方向正确与否、管道是否充满等实施细致检查。电磁流量计具体运行期间,需确保仪表内部所测定流体流动为正确方向,要和壳体上方箭头方向相一致。流体介质并没有充满管道大部分是因传感装置安装位置或者测量管网位置并未与设计安装实施标准相吻合。如图1所示,c、d位置处为传感装置最佳安置位置;细致检查传感装置器件完整性、测量管道内壁期间,需注重对传感装置重点零部件、各个接线端完好性的检查。仪表若未输出流量信号,也会因转换装置故障问题所致,可及时将线路板替换好,做好转换装置故障排查工作。较低流量与仪器参数设定期间,小信号较高切除设定,流量一边会有不显示现象产生。对此,务必注重对此方面故障问题的检查分析及有效排除,及时做好相关零部件更换处理,保证整个仪器可维持良好运行状态。根据高含水原油这一特殊介质及其使用环境的特点,对早期广泛应用于注水、注聚等计量中的电磁流量计进行了相关的技术改进。(1)对传感器进行防爆处理。通过现场应用进行综合分析,认为高含水原油的计量场所是油气密集的地方,需要对传感器进行防爆处理才能满足工作需要。根据传感器的特点及其使用环境的要求,选用了传感器的复合防爆型式,即浇封隔爆型,防爆标志为mdIIBT4.关键技术是传感器主体结构采用了浇封工艺技术、接线盒采用了隔爆外壳。接线盒的隔爆接合面为螺纹隔爆接合面,引人装置采用密封圈压紧螺母式,产品通过了国家防爆电气产品质量监督检验测试中心的5项试验。(2)提高转换器的输人阻抗,保证流量计的测量精度。对电磁流量计来说,传感器产生的感应电势只有几毫伏,如要进行准确测量,要求转换器的输人阻抗远远大于传感器的内阻,才能保证仪表的精度。电磁流量传感器的内阻仅与被测介质的电导率和电极直径有关。高含水油的电导率随含水情况有所变化,因此,采用了专用前置放大器,相应地提高了转换器的输人阻抗,保证了测量精度。(3)转换器实现智能化。智能电磁流量计采用了自动跟踪式励磁控制和智能反馈式信号放大处理技术,使用了多CPU协同信息处理的方法,使仪表在功能上具有了支持各种传感器匹配与校验、数字与模拟的系统连接、自诊断和安装调试测试、断电信息保护、在线信息查询、软件冲击自动恢复、多单位多形式的计量显示选择等全方位的智能化功能,操作使用十分方便。(4)改进型电磁流量计的主要技术指标。①适应的场所:转油站、联合站的高含水油计量,因为这些场所的高含水油经过油气分离,流态比较稳.定,含水波动较小,计量精度能够保证;②被测介质的含水率:>80%;③工作压力:≤2.5MPa;.④被测介质温度:≤100℃;⑤传感器衬里:可根据被测介质的温度选择不同的衬里。高含水油的温度一般在50~70℃,选择耐油橡胶衬里可满足计量要求;⑥口径依据被测液量的满量程流量来选择。电磁流量计的流速下限为0.5m/s。一般流量测量以2m/s为经济流速,而在高含水油测量时,流体的流速要求偏高一些,一般3~4m/s,这样可以避免低流速时原油附着于测量管壁及电极上,保证正常计量。.优点:(1)热式气体质量流量计可被测量的流体管道口径范围广.能够应用在各种口径的管道流量测量,从小、中口径到特大口径管道都可以,口径可达 9000mm.(2)流速测量范围广.可测量 0.02m/s~480m/s 范围内的流体流速.(3)测温范围和耐压范围很宽.待测气体的温度高达 900℃,可用于各种高温过程气体的测量,最高可以在 70MPa 的压力下进行测试.测量过程中不需要温度和压力补偿.所以在较大直径管道、较小流速、微小流量、测量流量浮动范围较大时,具有一定的优势.(4)可保证较高的测量精度.一般的热式气体质量流量计都属中等精度测量范围,其中部分仪表,如插入式、电磁式,可以达到高精度测量.国外进口的高精度仪表满量程误差可以达到±1%.(5)宽量程比.量程比可以达到 1000:1,且能保持精度要求.(6)可测量混合气体.(7)机械设计简单,容易安装和调试,维修简单,防振动.插入式只需要在管道上焊接法兰盘即可,管段式只需要进行管道转接,安装和操作方便.(8)不需要温度和压力补偿.缺点:(1)响应速率慢.由于热式气体质量流量计是依靠传热原理设计,而热量交换过程与加热温度探头和流体的热传导效率密切相关,需要一定的时间来完成换热过程,一般的相应时间为 2~5s;性能优越的流量计响应时间为 0.5s;甚至有些响应时间更慢.(2)精度易受流体组分影响.当被测流体为混合气体时,由于混合气体组分的变化,气体密度,粘度,热导率都会受到直接影响,使测量值发生较大误差而导致最后的流量计算结果产生误差.(3)在小流量测量中,热源探头的温度高于流体温度,导致热源探头向流体传导热量,影响流体和热源探头的温度差,影响测量精度.1.流量测量 现阶段,涡轮流量计对脉动流的直接测量还存在很大困难,但可通过误差方程分析、实验室试验和专业的脉动流量误差检测设备检测分析某一特定脉动流的测量误差。前两种方法基于脉动流的振幅和频率的可测量性,振幅和频率的测量可通过激光多普勒技术、热线风速仪法等。专业的脉动流量误差检测设备已有设备制造厂家在生产。1.1误差方程分析 通过对机翼理论的研究,可列出涉及惯量、夹角、叶轮半径、角速度等参数的误差运动方程,通过编程可求得针对某一特定涡轮流量计的不同振幅和频率脉动流的测量误差。依据动量守恒定律,可列出包含流速、切线速度等参数的非线性微分方程,通过计算和分析可理论推导测量误差。1.2实验室试验 现场实测脉动流的特性,采用已知标准体积压缩空气,在实验室模拟脉动流,将测量值与标准体积进行对比,分析测量误差。1.3误差检测设备检测 上海某公司生产的一种燃气脉动流误差检测设备,可较精确地测得脉动误差值,但暂未在山西省广泛应用。在绝大多数燃气公司的实际运行管理过程中,脉动流的特性参数无法在日常运行监测数据中获取,因此,主要定性地说明脉动流对涡轮流量计计量偏差的影响。2.测量误差 已有很多学者针对脉动流对计量的影响进行了研究。分析结果可知,由于叶轮受流体加速影响小,受流体减速影响大,计量始终存在正供销差。此外,正供销差取决于脉动流的振幅和频率,整体来说,如果脉动流频率大于叶轮角频率时正供销差值较大,脉动振幅增大时正供销差值也随之增大。3.脉动流对计量结果影响 A分输站涡轮流量计距离上游最近的压缩站(往复式压缩机增压)不到7km,且该分输站工艺布置紧凑。据实地测量,流量计上游直管段长度约为6Dn(Dn为涡轮流量计口径,mm),下游直管段长度约为4Dn。此外,7km管道沿线地势高低不平,加之煤层气气质水含量较大,导致在低洼处极易形成积液,积液也会造成脉动流。 2020年8—10月期间,下游公司发现正供销差持续增大时,对A分输站和B分输站的涡轮流量计进行了标定,但标定结果均为合格。随后下游公司在2020年11月5—7日对A至B分输站段管线进行了清管作业,共清出污水杂质约23t,清管完成后正供销差明显减小。清管前后实际供销差数据如表6所示。 除此之外,通过日常对气体涡轮流量计的运行监测,供气瞬时流量每次显示数据都在变化,且在一定时间内在1个值上下频繁波动(波动幅度约为依20%)。综合上述情况,该输气管道存在脉动流的可能性很大。脉动流会造成正供销差影响,对下游接气单位不利,因此有必要对脉动流的影响进行修正。

德国VSEAP0.4流量计样册1.机械干扰 在旋进漩涡流量计的运行过程中,机械干扰的存在会影响计量结果的准确性,在实际的计量过程中,如果旋进漩涡流量计的使用过程中受到了剧烈的机械振动或者冲击,其内部的电气元件会出现受到影响,出现严重的振动与变形情况。在一些油田工程中,应用旋进漩涡流量计时,这种仪表多是安装在室内的,这种使用环境使得其在具体的应用过程中,机械干扰的情况难以避免,甚至有时还存在着声波干扰、地面振动干扰等现象,这一系列的干扰都将会影响计量结果的准确性。2.紫外线的伤害 由于旋进漩涡流量计多处于室外露天环境下,这种运行与使用环境就导致在实际的应用过程中,极易受到外部环境因素的影响,仪表的屏幕显示难以正常进行,常常存在读数不清晰、显示不全的问题。3.感应探头易损坏 旋进漩涡流量计的使用过程中,感应探头是其中的主要元件,在实际的使用过程中,在一定的条件下,受到各种内外部因素的干扰,常常会出现感应探头损坏的情况,比如,在大井节流器失效、开镜过程中气流量中杂质含量较高的情况下,探头极易被损坏,引发计量异常。孔板流量计是利用流体的动静压能转换原理进行流量测量的,这一-差压与流体流量存在如下关系: 式中:qm为质量流量,kg/h;qv为工况条件下的体积流量,m³/h;x为流量系数;e为流束膨胀系数;△e为差压,Pa;Q为工况条件下被测流体的密度,kg/m³;d为工况条件下的节流开孔直径,mm。由(1)式和(2)式可以看出,被测流体的流量是流体的密度和孔板前后差压的函数。当测得某一差压时,由于所测流体的密度不同,所代表的流量是不同的,只有当流体的密度值等于孔板流量计设计条件中的密度值时,差压才能真实反映所测的流量。蒸汽从发生到使用,由于热损耗,温度和压力的下降是不可避免的,导致其密度与设计值的差异,从而产生了误差,并且随着蒸汽参数的波动而波动,实际测量时只能通过温压补偿来修正,补偿公式的严谨性直接影响测量误差。涡街流量计安装方式的选择 涡街流量计既可安装在水平管道上,也可安装在垂直管道上。 因为涡街流量计是一种速度式流量计,要实现准确测量,必须注意保证满管测量,故在水平管道上安装涡街流量计,一般应选择安装在管道的最低处,安装在垂直管道时,流体的流向应自下而上。 涡街流量计直管段要求 涡街流量计的安装对其前后直管段的要求是非常苛刻的,流量计上游要保证有10D~35D 的直管段(D为管道直径),流量计下游直管段应不小于5D,上游直管段长短视上游有无直角弯、扩大管、缩径管而定。 特别注意,在直管段满足要求的情况下,流量计应尽量选择安装在前后直管段尽量大的管道位置处,这样能够保证流量计上下游节流件所造成的紊流不致影响到流量计测量精度。涡街流量计安装位置的选择1)管道的强烈震动会对涡街流量计的测量产生一定的影响,故在选择涡街流量计安装位置时,应尽量避免安装在有强烈震动的管道上,以免影响测量精度.当管道有震动时,必须采取减震措施。2)工频干扰信号存在也会对涡街流量计的测量产生非常大的影响,工频信号会叠加到测量信号中去。故涡街流量计尽量避免安装在大功率电动机等存在的环境里,在此环境下,必须采取做好仪表接地,选用屏蔽电缆,信号的传输方式采用直流信号等措施消除工频干扰。3)涡街流量计漩涡发生体的迎流面必须正对着流体流动方向,安装时应特别注意,否则会产生非常大的偏差。4)在涡街流量计带有流量调节的系统中,涡街流量计即使满足直管段要求,也必须安装在调节阀前。否则调节阀产生的射流会对涡街流量计的测量产生影响,会出现阀门开小,流量反而增大的现象。德国VSEAP0.4流量计样册电磁流量计的空管报警是用实测传感器中的电导率来做判断的。 不同的流体具有不同的电导值电阻值空管检测实际上是检测被测导电液体的电阻与实验导电液体电阻的比值液体的相对导电率是否超出阈值。超出阈值就意昧着被测流体电导率远低于实验液体的电导率相当于空管。空管报警阈值的默认值尾 999.9%。 空管量程修正是为测量相对电导率而用的。在传感器充满试验液体情况下修正系数使电导比为一个确定值例如试验液体是水其中导率约为100μScm可修正为100当被测液体电导率为 5μScm 相对的电导比则大约显示2000%。如果试验液体水的电导比修正为10。那么被测液体电导率为5μScm时相对电导比则大约显示200%。 电磁流量计报警阈值设置是选择空管报警灵敏度范围的。最大阈值可设为999.9%。如上例被测液体显示2000%时发出报警显示200%时不报警。因此欲使电导率5μScm在显示电导比200%时发出报警需要设阈值在200%以下。空管报警量程的默认值为100%。按照热式气体质量流量计安装方式的不同,可以分为插入式和管段式热式气体流量计。插入式流量计(一般有两部分组成:检测探头和转换器)一般采用法兰盘安装或其他方式安装,将测量探头插入待测流体管道内,通过转换器部分对检测探头部分采集的信号进行处理,按一定的关系换算成实际流量并通过表头显示。插入式流量计在大、中型管道以及特大型管道的流量测量上,相对于管段式流量计有着一定的优势。管段式气体流量计,将测量探头部分固定在一段标准管道内,在使用时,必须要在实际流体管道上转接上标准管道,分布式热式流量计多采用这种方法。 按流量计检测变量的不同,将之分为恒定温差型和恒定功率型流量计。恒温差型流量计是指,随着流体的流动,测量探头上热量散失,系统以一定的功率对测量探头进行加热,维持两个探头恒定的温度差(比如 100 摄氏度)。恒定功率型是指以某一恒定的功率对测量探头加热,流量为零时两个探头的温度差为某一温度差值(比如100摄氏度),随着流量的变化,两个探头的温度差值发生变化,使流量与温度差值之间体现一定的关系,以此为依据而设计的流量计。 按照热源作用位置的不同,将热式气体质量流量计归结为热分布式和热耗散式两大类。热耗散式流量计采用的是热力学中的金氏定律,因此又称为金氏流量计。热分布式流量计利用气体流动传递热量,改变被测量管道上的温度分布情况,主要应用在微小流量的洁净气体测量和精细制造工艺的过程控制等。实际应用中,磁翻板液位计如果出现消磁现象,就不能正常使用。那么,消磁原因是什么?如果磁翻板液位计出现消磁现象应如何处理呢?一、磁翻板液位计消磁的原因: 侧装式磁翻板液位计的磁浮子在使用过程中磁浮子会有消磁现象,从而导致磁翻板液位计失效。一般来讲,造成磁翻板液位计消磁的原因,主要有以下几点1、硬磁材料的剩磁小于耦合临界值。随着时间变化,受自身因素的影响随着时间的推移,硬磁材料的剩磁会出现小于耦合临界值的现象。 2、高性能硬磁材料有氢脆现象。 3、使用温度高于硬磁材料的居里温度。二、磁翻板液位计消磁的处理: 针对导致磁翻板液位计消磁的原因,通常需要做到以下几点,以应对磁翻板液位计的消磁现象。1、从设计方面看,要选用恰当的硬磁材料。比如在选用磁性材料时,应选用居里温度高于使用温度20%以上、能够保证五年后剩磁超过临界值的磁性材料。2、从生产方面看,加工磁浮子时应注意:a.在磁浮子内填充惰性气体(如氩气)。 b.在产品生产加工阶段,焊接(氩弧焊)时应注意采取降温措施,以避免磁浮子的磁性材料处的温度超过磁性材料的居里温度。3、从使用方面看,用户要做到以下几点: a.在订货时,选用恰当的型号,达到使用温度不超过磁翻板液位计的标称温度; b.在使用中,应对侧装式磁翻板液位计的使用情况(能否正常工作)进行随时观察,并注意记录介质的实际温度。任何一类计量仪表都具有其特殊性,旋进旋涡流量计也不例外.为了让该种仪表能够更好地服务于流量计量工作,来自于生产现场的实践经验表明,以下几个方面的注意事项就应当引起有关管理及使用部门的足够重视。1.重视仪表选型 在已经选定了仪表种类(比如旋进旋涡流量计的情况下,紧接着就是对仪表规格及其配套元件的选择,这一工作看似简单,实则至关重要.一句话,选好才能用好.为此,在选型过程中应把握住两条基本原则,即:一要保证使用精度,二要保证生产安全.要做到这一点,就必须抓实三个选型参数,即近期和远期的最大,最小及常用瞬时流量(主要用于选定仪表的大小规格),被测介质的设计压力(主要用于选定仪表的公称压力等级),工作压力(主要用于选定仪表压力传感器的压力等级)。2.进行用前标校 一方面,考虑到目前对这类仪表的现场检定还存在这样那样的困难.另外,如果购置的意图又是准备将该种仪表运用于比较重要的计量场合,比如大流量的贸易计量或计量纠纷比较突出的测量点,并且运用现场也不具备流量在线标校条件,那么在这种情况下,仅凭购买时由生产厂家提供的一纸出厂合格证明就轻易判定该表全部性能合格,那就有些为时过早.因此,为了确保仪表在今后的工作过程中其测量结果的可靠与准确,就有必要在正式安装前将其送往具有这方面检定能力及资质的部门进行一次全流量范围内的系统检定。3.搞好工艺安装 虽然该种仪表对工艺安装及使用环境没有太多的特殊要求,但任何一类流量测量仪表都有这样一种共性,即尽可能避免振动及高温高热环境,远离流态干扰元件(如压缩机,分离器,调压阀、大小头及汇管,弯头等),保持仪表前后直管段同心及内壁光滑平直,保证被测介质为洁净的单相流体等等。4.加强后期管理 该种仪表虽然具有多种自动处置功能和微功耗的特点,但投运之后仍需加强管理。比如,为了保证仪表长期工作的准确性,可靠性(避免意外停运和数据丢失),就应定期:进行系统标校(每1~2年),抄录表头数据(每天或每周),更换介质参数(每月或每季)以及不定期查看电池状况,检查仪表系数及铅封等。3.注意内部维护 如果由于气质脏污或其它原因需要对仪表的测量腔体及其构件进行定期检查或清洗,那么有一点则必须特别注意:对于同规格的旋进旋涡流量计,其旋涡发生体,导流体等核心组件不能互换,否则,须重新标定仪表计量系数并对其配带的温度及压力传感器进行系统校正。1.煤浆的磨损大,所以电磁流量计采用耐磨的ETFE衬里”的观点不准确,ETFE主要解决了与金属的附着问题。虽然ETFE的原料便宜,但其目前的处理工艺复杂,用它来制作衬里,成本比PFA还高,且没有表征ETFE的.耐磨性优于PTFE的佐证。2.采用低噪声电极,所以波动小”的观点不准确。电极的形状的确与噪声大小相关。由于原进口流量计的电极在某煤化I企业有结垢现象,经常需要把流量计拆下来用晶相砂纸打磨电极,而上海威尔泰采用自清洁电极(即尖状电极),有效地解决了结垢问题。实际应用表明,虽然采用自清洁电极流量计的平稳性比采用球面电极的平稳性稍差,但也没有出现过异常波动。所以,我们认为,在解决煤桨流量输出异常波动方面,低噪声电极并非关键技术。3.原进口流量计安装要求低,‘前5D后2D'就行”的观点不准确。在实验室标定时,要求直管段比较长(达到10D);在应用中,-般“前5D后3D”就足够了,这并非仅仅适用于进口流量计。如果缩径,直管段要求还可以进一步减小。另外,现阶段的煤浆流量计,基本没有投闭环控制的,对于精度的要求不是很高,关键是保证安全连锁处于有效状态,以避免异常波动引起误跳车。4.原进口流量计流速大小对流量的影响很小,适用0.3m/s的流速"的观点不准确。这种说法有很大的误导作用。实际应用经验表明,当流速较低时,尤其是当流速低于0.5m/s时,煤浆流量计容易波动。因此,这种观点不准确。5.单纯缩径"的观点不准确。我们曾经把管道缩径,安装较小口径的流量计,实际使用效果却不如采用本文所提的方案。一方面,由于涉及管道改造、高压法兰以及压力容器级别的焊接,综合成本也不低;另一方面在管道上缩径,小口径长度会远大于在电磁流量计上缩径,导致压损增大,再加.上转换器未替换,很多结果不可预知。6.原进口流量计因为业绩多,所以风险小”的观点不准确。业绩多和业绩好是两个概念,二者没有因果联系。由于历史的原因,原进口流量计市场占有率比较高,好的业绩虽然多,但差的业绩也有。一旦波动引起误跳车,损失是很大的。据不完全统计,因为煤浆流量计波动引起误跳车,200000t甲醇生产线一次损失约为300000元;600000t甲醇生产线,误跳车一次的损失约为800000元。这也是质量好的煤浆流量计价格居高不下的原因之一。我们曾经使用两种品牌的进口流量计,八个月就坏的情况也出现过,-年坏三套的情况也发生过。